Edx-python学习笔记(6.002)
List of Lecture Topics
- Lecture 1- Optimization and Knapsack Problem
- Computational models
- Intro to optimization
- 0/1 Knapsack Problem
- Greedy solutions
- Lecture 2 - Decision Trees and Dynamic Programming
- Decision tree solution to knapsack
- Dynamic programming and knapsack
- Divide and conquer
- Lecture 3 - Graphs
- Graph problems
- Shortest path
- Depth first search
- Breadth first search
- Lecture 4 - Plotting
- Visualizing Results
- Overlapping Displays
- Adding More Documentation
- Changing Data Display
- An Example
- Lecture 5 - Stochastic Thinking
- Rolling a Die
- Random walks
- Lecture 6 - Random Walks
- Drunk walk
- Biased random walks
- Treacherous fields
- Lecture 7 - Inferential Statistics
- Probabilities
- Confidence intervals
- Lecture 8 - Monte Carlo Simulation
- Lecture 9 - Monte Carlo Simulations
- Sampling
- Standard error
- Lecture 10 - Experimental Data
- Errors in Experimental Observations
- Curve Fitting
- Lecture 11 - Experimental Data
- Goodness of Fit
- Using a Model for Predictions
- Lecture 12 - Machine Learning
- Feature Vectors
- Distance Metrics
- Clustering
- Lecture 13 - Statistical Fallacies
- Misusing Statistics
- Garbage In Garbage Out
- Data Enhancement