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Abstract 
 
Most human traits are complex as they are affected by many genetic and environmental 

factors as well as the potential interactions between them. In the field of quantitative genetics, 

it has been formulated that the phenotypic value of a complex trait (P) can be partitioned into 

the genetic component (G), the environmental component (E), and the genotype-by-

environment interaction component (IGE). Furthermore, the genetic variance component can 

be partitioned into the additive genetic component, the dominance genetic component, and 

the epistatic genetic component. Prior work in quantitative genetics has provided us powerful 

tools to understand human complex traits from more than a century ago (Chapter 1). 

 

The genome-wide association study (GWAS), an experimental design to associate a trait of 

interest with genetic variants across the genome, has developed rapidly during the last 

decade, due to the advancement of genotyping technologies and the large samples 

accumulated through biobanks and research consortia. Apart from identifying trait-associated 

genetic variants, GWASs provide tremendous resources to answer many old but important 

questions in quantitative genetics, including estimating the proportion of phenotypic variance 

attributable to the genetic component (i.e., heritability estimation), estimating the genetic 

correlation between two traits, inferring causal relationship between exposure and outcome 

traits, predicting the trait based on genetic information, and so on (Chapter 1). 

 

In this thesis, the original research results of three projects have been included. Firstly, I 

performed a genome-wide variance quantitative trait locus (vQTL) analysis to associate the 

genetic variants with the variance of a phenotype and demonstrated the identification of 

vQTLs can be used to infer genotype-by-environmental interaction (GEI) without 

environmental data (Chapter 2). Secondly, I quantified the inflation in the test-statistics for 

two interaction effects, i.e., GEI and genotype-by-genotype interaction, by theoretical 

derivation and simulation study, respectively (Chapter 3). Thirdly, I explored methods to 

integrate both the genetic and environmental information to improve the accuracy of 

phenotype prediction (Chapter 4). 

 

The final chapter included the summary of the findings and a discussion of related future 

directions (Chapter 5).  



 ii 

Declaration by author 
 

This thesis is composed of my original work, and contains no material previously published 

or written by another person except where due reference has been made in the text. I have 

clearly stated the contribution by others to jointly-authored works that I have included in my 

thesis. 

 
I have clearly stated the contribution of others to my thesis as a whole, including statistical 

assistance, survey design, data analysis, significant technical procedures, professional 

editorial advice, financial support and any other original research work used or reported in 

my thesis. The content of my thesis is the result of work I have carried out since the 

commencement of my higher degree by research candidature and does not include a 

substantial part of work that has been submitted to qualify for the award of any other degree 

or diploma in any university or other tertiary institution. I have clearly stated which parts of 

my thesis, if any, have been submitted to qualify for another award. 

 
I acknowledge that an electronic copy of my thesis must be lodged with the University 

Library and, subject to the policy and procedures of The University of Queensland, the thesis 

be made available for research and study in accordance with the Copyright Act 1968 unless a 

period of embargo has been approved by the Dean of the Graduate School. 

 
I acknowledge that copyright of all material contained in my thesis resides with the copyright 

holder(s) of that material. Where appropriate I have obtained copyright permission from the 

copyright holder to reproduce material in this thesis and have sought permission from co-

authors for any jointly authored works included in the thesis. 

  



 iii 

Publications included in this thesis 
1. Wang, H., Zhang, F., Zeng, J., Wu, Y., Kemper, K.E., Xue, A., Zhang, M., Powell, 

J.E., Goddard, M.E., Wray, N.R., Visscher, P.M., McRae, A.F., Yang, J.. Genotype-

by-environment interactions inferred from genetic effects on phenotypic variability in 

the UK Biobank. Science advances, 2019, 5(8), p.eaaw35381. 

 

Submitted manuscripts included in this thesis 
1. Hemani, G., Powell, J.E., Wang, H., Shakhbazov, K., Westra, H., Esko, T., Henders, 

A.K., McRae, A.F., Martin, N.G., Metspalu, A., Franke, L., Montgomery, G.W., 

Goddard, M.E., Gibson, G., Yang, J., Visscher, P.M.. Testing for genetic interactions 

with imperfect information about additive causal effects. Nature (under review). 

 

Other publications during candidature 

Peer-reviewed papers 
1. Wang, H., Zhang, F., Zeng, J., Wu, Y., Kemper, K.E., Xue, A., Zhang, M., Powell, 

J.E., Goddard, M.E., Wray, N.R., Visscher, P.M., McRae, A.F., Yang, J. (2019) 

Genotype-by-environment interactions inferred from genetic effects on phenotypic 

variability in the UK Biobank. Science Advances, 5(8), p.eaaw3538.1 

2. Lloyd-Jones, L.R., Zeng, J., Sidorenko, J., Yengo, L., Moser, G., Kemper, K.E., 

Wang, H., Zheng, Z., Magi, R., Esko, T., Metspalu, A., Wray, N.R., Goddard, M.E., 

Yang, J., Visscher, P.M. (2019) Improved polygenic prediction by Bayesian multiple 

regression on summary statistics. Nature Communications, 10(1), pp. 5086.2 

3. Revez, J.A., Lin, T., Qiao, Z., Xue, A., Holtz, Y., Zhu, Z., Zeng, J., Wang, H., 

Sidorenko, J.J., Kemper, K.E., Vinkhuyzen, A.A., Frater, J., Eyles, D., Burne, T.H., 

Mitchell, B., Martin, N.G., Zhu, G., Visscher, P.M., Yang, J., Wray, N.R., McGrath, 

J.J. (2020) Genome-wide association study identifies 143 loci associated with 25 

hydroxyvitamin D concentration. Nature Communications, 11(1), p. 1647.3 

4. Wu, Y., Qi, T., Wang, H., Zhang, F., Zheng, Z., Phillips-Cremins, J. E., Deary, I. J., 

McRae, A. F., Wray, N. R., Zeng, J., Yang, J. (2020) Promoter-anchored chromatin 

interactions predicted from genetic analysis of epigenomic data. Nature 

Communications, 11(1): p. 2061.4 

5. Zeng J., Xue A., Jiang L., Lloyd-Jones L. R., Wu Y., Wang H., Zheng Z., Yengo L., 



 iv 

Kemper K. E., Goddard M. E., Wray N. R., Visscher P. M., Yang J. (2021) 

Widespread signatures of natural selection across human complex traits and 

functional genomic categories. Nature Communications, 12: p. 1164.5 

 

Conference abstracts 
1. Quantifying the inflation in test-statistics for epistasis due to imperfect tagging using 

whole-genome sequence data (lightning talk). GeneMappers Conference 2018. 

Queensland, Australia. 

2. Genotype-by-environment interactions inferred from genetic effects on phenotypic 

variability in the UK Biobank (Poster presentation). Gorden Research Conference 

Quantitative Genetics and Genomics 2019. Tuscany, Italy. 

3. Integrating the genetic and environmental information to improve the phenotype 

prediction for body mass index (Poster presentation). The 6th International Conference 

of Quantitative Genetics Virtual 2020. 

 

Contributions by others to the thesis 
 

Several other people have made significant contributions to this thesis, including my 

principal advisor Jian Yang and all the co-authors including Futao Zhang, Jian Zeng, Yang 

Wu, Kathryn E. Kemper, Angli Xue, Longda Jiang, Julia Sidorenko, Min Zhang, Joseph E. 

Powell, Michael E. Goddard, Naomi R. Wray, Peter M. Visscher, Allan F. McRae. 

 

Statement of parts of the thesis submitted to qualify for the award 

of another degree 
 

No works submitted towards another degree have been included in this thesis. 

 

Research involving human or animal subjects 
 

No animal or human subjects were involved in this research. 

  



 v 

Acknowledgments 
 
My PhD study cannot be finished without the help from many amazing people. Firstly, I 

would like to give my sincere gratitude to my principal advisor Jian Yang, who provided 

excellent guidance for all three research projects included in this thesis, practical feedback 

and suggestion on the research progress, and valuable encourage to overcome the difficulties 

in both my work and life. 

 

I also would like to thank my associate advisor Allan McRae, who is always supportive and 

friendly. Thank Naomi Wray and Lachlan Coin for being the committee members for all my 

three milestones. Thank all co-authors for their help for my research projects, including Futao 

Zhang, Jian Zeng, Yang Wu, Kathryn E. Kemper, Angli Xue, Longda Jiang, Julia Sidorenko, 

Min Zhang, Joseph E. Powell, Michael E. Goddard, Naomi R. Wray, Peter M. Visscher, 

Allan F. McRae, and Jian Yang. 

 

I feel really honored and grateful to be part of PCTG, such a wonderful team with so many 

talented and extraordinary colleagues, where we can communicate, work and learn freely 

with each other regardless of possible existing language and culture barriers. 

 

Acknowledge also goes to many supports from IMB and UQ, including the HDR officer 

Amanda Carozzi, the IT team from IMB and RCC, and all kinds of training provided by UQ 

student service/library/graduate school. 

 

Finally, I would like to thank my wife Ranran Zhang for her company from China to 

Australia and my parents for their lifelong support. 

  



 vi 

Financial support 
 
This research was supported by University of Queensland Training Tuition Fee Offset, 

University of Queensland Research Training Stipend, Research Higher Degree Top Up 

Scholarships, and the Australian National Health and Medical Research Council (1113400). 

 

Keywords 
 
Quantitative genetics, genome-wide association study, genotype-by-environment interaction, 

variance quantitative trait locus, epistasis, genetic prediction, polygenetic risk score 

 

Australian and New Zealand Standard Research Classifications 

(ANZSRC) 
 

ANZSRC code: 060412, Quantitative Genetics, 100% 

 

Fields of Research (FoR) Classification 
 

FoR code: 0604, Genetics, 100% 

  



 vii 

Table of Content 
Abstract ....................................................................................................................................... i 

List of Figures ........................................................................................................................... ix 

List of Tables ............................................................................................................................ xi 

List of Abbreviations used in the thesis ................................................................................... xii 

Chapter 1: Introduction ....................................................................................................... 1 

1.1 Quantitative genetics ................................................................................................. 2 

1.2 GWAS ....................................................................................................................... 4 

1.3 Genotype-by-environment interactions (GEI) ........................................................... 6 

1.4 Epistasis ..................................................................................................................... 8 

1.5 Prediction of complex traits ....................................................................................... 9 

Chapter 2: Genotype-by-environment interactions inferred from genetic effects on 

phenotypic variability in the UK Biobank ............................................................................... 11 

2.1 Abstract .................................................................................................................... 13 

2.2 Introduction ............................................................................................................. 13 

2.3 Results ..................................................................................................................... 15 

2.4 Discussion ................................................................................................................ 46 

2.5 Methods ................................................................................................................... 54 

2.6 URLs ........................................................................................................................ 57 

2.7 Acknowledgements ................................................................................................. 57 

2.8 Supplementary Notes ............................................................................................... 58 

Chapter 3: Inflation in test-statistics for genotype-by-environment and genotype-by-

genotype interactions due to linkage disequilibrium ............................................................... 62 

3.1 Abstract .................................................................................................................... 63 

3.2 Introduction ............................................................................................................. 63 

3.3 Results ..................................................................................................................... 64 

3.4 Discussion ................................................................................................................ 74 



 viii 

3.5 Methods ................................................................................................................... 75 

3.6 Supplementary Notes ............................................................................................... 77 

Chapter 4: Integrating genetic and environmental information to improve phenotype 

prediction for body mass index ............................................................................................... 85 

4.1 Abstract .................................................................................................................... 86 

4.2 Introduction ............................................................................................................. 86 

4.3 Results ..................................................................................................................... 87 

4.4 Discussion ................................................................................................................ 93 

4.5 Methods ................................................................................................................... 94 

4.6 URLs ........................................................................................................................ 97 

Chapter 5: Summary and discussion ................................................................................. 98 

5.1 GEI effects inferred from vQTL analysis ................................................................ 99 

5.2 Inflation level in vQTL and epistasis test ................................................................ 99 

5.3 Genetic and environmental risk score ................................................................... 100 

5.4 Future directions .................................................................................................... 101 

Bibliography .......................................................................................................................... 103 

  



 ix 

List of Figures 
Figure 2-1 Schema of the differences in mean or variance among genotype groups in the 

presence of GEI, QTL and vQTL effects. ............................................................................... 14 

Figure 2-2 Evaluation of (a) statistical methods and (b) phenotype processing strategies for 

vQTL analysis by simulation based on a single-SNP model. .................................................. 16 

Figure 2-3 Evaluation of (a) statistical methods and (b) phenotype processing strategies for 

vQTL analysis by simulation based on a multiple-SNP model. .............................................. 18 

Figure 2-4 Phenotypic correlations among 13 quantitative traits in the UKB. ....................... 21 

Figure 2-5 Spurious vQTL association due to the coincidence of a minor allele with a 

phenotypic outlier. ................................................................................................................... 22 

Figure 2-7 Manhattan plots of genome-wide vQTL analysis for 13 traits in the UKB. .......... 24 

Figure 2-7 The vQTL regional plot at the FTO locus for 5 traits. ........................................... 30 

Figure 2-8 A plot of test statistic (-log10(PvQTL)) against MAF for the 41 independent vQTLs 

across traits. ............................................................................................................................. 32 

Figure 2-9 Manhattan plots of genome-wide vQTL analysis for height squared in the UKB. 33 

Figure 2-10 Manhattan plots of genome-wide vQTL analysis for height cubed in the UKB. 34 

Figure 2-11 Manhattan Sunset plot of genome-wide vQTL and QTL analyses for waist 

circumference in the UKB. ...................................................................................................... 36 

Figure 2-12 QTL and vQTL regional plots at the CCDC92 or FTO locus for waist 

circumference. ......................................................................................................................... 37 

Figure 2-13 Phenotypic correlations among PA and SB measures in the UKB. ..................... 38 

Figure 2-14 Enrichment of GEI effects among the 75 vQTLs in compared with a random set 

of QTLs. ................................................................................................................................... 39 

Figure 2-15 Enrichment of GEI effects among the 75 vQTLs in compared with a random set 

of QTLs using the raw phenotypic values. .............................................................................. 45 

Figure 2-16 Comparison of the Young et al. method with the Levene’s test by vQTL 

simulation. ............................................................................................................................... 47 

Figure 2-17 Quantile-Quantile plots of vQTL associations for the 13 UKB traits. ................ 50 

Figure 3-1 Verification of the expected Levene’s test F-statistic due to phantom vQTL effect 

by simulation. .......................................................................................................................... 66 

Figure 3-2 Expected phantom vQTL F-statistics from the Levene’s test. .............................. 68 

Figure 3-3 Estimated variance explained by top QTL SNPs for the 13 UKB traits. ............... 69 

Figure 3-4 vQTL test statistics (-log10(PvQTL)) from analyses with and without adjusting the 



 x 

phenotype for the QTL effect(s) of the top GWAS SNP(s) within 10Mb of the top vQTL 

SNP. ......................................................................................................................................... 70 

Figure 3-5 Manhattan plot of epistasis analysis for one of top vQTL SNPs. .......................... 70 

Figure 3-6 The inflation of test-statistics for epistasis test for simulated phenotype with 

different variance explained using four different genotyping strategies. ................................ 72 

Figure 3-7 The LD r2 between the causal variant and top variant identified using four 

different genotyping strategies with different variance explained. ......................................... 73 

Figure 3-8 The inflation of test-statistics for epistasis test using four additional models. ...... 73 

Figure 4-1 Phenotypic correlation (rp), genetic correlation (rg), and causal effect size (bxy) for 

BMI and eight environmental factors. ..................................................................................... 89 

Figure 4-2 Prediction accuracy of GRS and GERSs with eight environmental factors in 

different data splitting strategies. ............................................................................................. 90 

Figure 4-3 Prediction accuracy of GRS and GERSs with each one of eight environmental 

factors in different data splitting strategies. ............................................................................. 91 

Figure 4-4 Prediction accuracy of GRS of BMI and MGRS of BMI and eight environmental 

factors in comparison with GRS in different data splitting strategies. .................................... 92 

Figure 4-5 Simulation study evaluating the prediction accuracy for trait 1 of MGRS in 

comparison to GRS. ................................................................................................................. 93 

 

  



 xi 

List of Tables 
Table 2-1 Descriptive summary of the quantitative traits and used in this study from the 

UKB. ........................................................................................................................................ 19 

Table 2-2 The number of experiment-wise significant vQTLs or QTLs for the 13 UKB traits.

 ................................................................................................................................................. 25 

Table 2-3 Seventy-five experiment-wise significant vQTLs for 9 UKB traits. ...................... 26 

Table 2-4 Colocalization and HEIDI tests for the vQTL associations at the FTO locus for the 

5 traits. ..................................................................................................................................... 31 

Table 2-5 Testing for the variance effects of the BMI, WHR and FFR vQTLs on 1/HT2, 1/HC 

and 1/FVC respectively. .......................................................................................................... 34 

Table 2-6 Descriptive summary of the environmental data used in this study from the UKB.

 ................................................................................................................................................. 38 

Table 2-7 GEI analyses with five environmental factors/covariates in the UKB. .................. 41 

Table 2-8 GEI effect between the CHRNA5-A3-B4 locus and smoking on FFR .................... 52 

Table 2-9 GEI effect between the WNT16-CPED1 locus and age on BMD .......................... 52 

Table 2-10 Associations of FTO locus with obesity-related traits stratified by physical 

activity (PA) levels .................................................................................................................. 52 

Table 2-11 Associations of FTO locus with obesity-related traits stratified by sedentary 

behaviour (SB) levels .............................................................................................................. 53 

Table 3-1 The number of variants on chromosomes 21 and 22 for genotype data generated 

using different strategies. ......................................................................................................... 75 

Table 4-1 Phenotype and eight environmental factors in UKB ............................................... 88 

Table 4-2 The sample size of training, validation and testing dataset in different data splitting 

strategies. ................................................................................................................................. 95 

 

  



 xii 

List of Abbreviations used in the thesis 
Abbreviations  

1KG3 1000 genomes project phase 3 

ACC/AHA American College of Cardiology/American Heart Association 

ANOVA Analysis of variance 

BFP Body fat percentage 

BMD Heel bone mineral density T-score, automated 

BMI Body mass index 

BMR Basal metabolic rate 

BW Birth weight 

DET Dispersion effect test 

DGLM Double generalized linear model 

ERS Environmental risk score 

FEV1 Forced expiratory volume in 1-second 

FFR FEV1 and FVC ratio 

FK test Fligner-Killen test 

FPR False positive rate 

FVC Forced vital capacity 

G6PDD Gluscose-6-phosphate dehydrogenase deficiency 

GEI Genotype-by-environment interaction 

GERS Genetic and environmental risk score 

GIF Genomic inflation factor 

GREML GRM restricted maximum likelihood 

GREML-LDMS MAF and LD stratified GREML  

GREML-MC GREML with multiple components 

GREML-SC GREML with single component 

GRM Genomic relatedness matrix 

GRS Genetic risk score 

GWAS Genome-wide association study 

GWS Genome-wide significant 

HC Hip circumference 

HE regression Haseman-Elston regression 

HRS Haplotype reference consortium 



 xiii 

HT Standing height 

IPAQ International physical activity questionnaire 

LD Linkage disequilibrium 

LDSR LD score regression 

LMM Linear mixed model 

LRT Likelihood ratio test 

MAF Minor allele frequency 

MGRS Multiple GRS 

MLR Multiple linear regression 

MPS Multiple polygenic risk score 

MR Mendelian Randomization 

NCI Net reclassification improvement 

PA Physical activity 

PC Principal component 

PKU Phenylketonuria 

PRS Polygenic risk score 

QTL Quantitative trait locus 

RINT Rank-based inverse-normal transformation 

SB Sedentary behavior 

SNP Single nucleotide polymorphism 

UKB UK Biobank 

vQTL Variance quantitative trait locus 

WC Waist circumference 

WGS Whole genome sequence 

WHR Waist to Hip Ratio 

WHRadjBMI WHR adjusted for BMI 

WTCCC Wellcome Trust Case Control Consortium 

XP Xeroderma pigmentosum 

 



 1 

1 
Chapter 1: Introduction 
  



 2 

Most human traits are complex as they are affected by many genetic and environmental 

factors as well as the potential interactions between them6,7. Quantitative genetics, founded 

more than one century ago8,9, provides us great tools to understand human complex traits. In 

this chapter, I will introduce the basic concepts of quantitative genetics and its application in 

the era of genome-wide association study (GWAS). I will also introduce the background of 

three specific topics involved in the research studies presented in chapters 2-4, which are 

genotype-by-environment interaction (GEI), epistasis, and genetic prediction. 

 

1.1 Quantitative genetics 

Quantitative genetics focuses on the genetic study of quantitative traits that are continuously 

distributed in the population (e.g. human height) in contrast to discrete or qualitative traits 

(e.g. pea color)6,7; furthermore, the theories and methods developed in quantitative genetics 

can also be extended for complex diseases10, such as diabetes11, cardiovascular disease12, and 

psychiatric disease13. The heredity of quantitative traits usually involves many genetic 

variants (e.g. single nucleotide polymorphism or SNPs) with small effects in comparison with 

Mendelian traits14 that are controlled by one or a few genetic variants with large effects. 

 

The foundation of quantitative genetics can be traced back to more than one century ago8,9. 

With the rediscovery of Mendel’s laws in the 1900s and also the work of Francis Galton in 

the 1880s15, there were conflicting views between Mendelians supporting discontinuous 

evolution and biometricians supporting Darwinian evolution16-18. Fisher’s 1918 paper8 

proposed the model of a very large number of Mendelian genes each with small effects (also 

called infinitesimal model later)17 and finally reconciled the debate. The paper is seen as the 

founding paper of quantitative genetics and also introduces a series of statistical concepts 

(e.g. variance), which are still widely used in modern genetics and statistics. 

 

In quantitative genetics, the phenotypic value or its variation is partitioned into different 

components which can be explained by observable data, such as genetic factors or 

environmental factors. The phenotypic value of a complex trait (#) is partitioned into 

genotype ($) and environment (%) components with the interaction between them (&!"): 

# = $ + % + &!" 

 

Thus, the variance of a complex trait ()#) is partitioned into components attributable to 
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genotype ()!), environment ()") and GEI effect ()!") with the covariance between genotype 

and environment (*+,!"): 

)# = )! + )" + )!" + 2*+,!" 

Here the genotype-environment correlation and GEI are different19, although both terms are 

often ignored in genetic analysis of human complex traits. More discussion about GEI can be 

found in section 1.3 in Chapter 1, Chapter 2, and Chapter 3. 

 

Furthermore, the genetic variance ()!) is partitioned into the variance of additive ()$), of 

dominance (interaction between two alleles at a single locus, )%), and of epistatic (interaction 

between two or more loci, )&) genetic effects. The dominance and epistatic genetic effects are 

also called non-additive genetic effects. 

)! = )$ + )% + )& 
 

Then heritability20 is defined as the proportion of the total phenotypic variance explained by 

genetic variance (broad-sense heritability, -') or additive genetic variance (narrow-sense 

heritability, ℎ'): 

-' = )!
)#

 

ℎ' = )$
)#

 

Heritability, usually referred to as narrow-sense heritability, is an important parameter in 

genetics as it defines the upper boundary of the accuracy of genetic prediction and is related 

to the response to selection. It can be estimated without any knowledge about the specific 

genes or genetic variants20. Traditionally, heritability is often estimated from the 

resemblances between relatives, such as regression between monozygotic and dizygotic twin 

pairs or parents and offspring pairs in simple and balanced designs, or a linear mixed model 

in more complicated and unbalanced designs7,20. For example, Polderman et al. meta-

analyzed the estimated heritability from 2,748 papers, published from 1958 to 2012 including 

14,558,903 monozygotic or dizygotic twin pairs for 17,804 traits, and found the mean 

heritability across all traits is 49%21. Another example is Lakhani et al. that estimated 

heritability using 56,396 twin pairs and 724,513 sibling pairs from health insurance data and 

found the mean estimated heritability is 31.1% across 560 disease-related phenotypes22. 
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1.2 GWAS 

Another equally (if not more) important goal for the genetic study of human complex traits is 

to identify the specific genetic variants influencing the traits. Early studies with either linkage 

analysis or candidate gene association analysis were largely unsuccessful23. Then people 

started to performed genome-wide association study (GWAS)24,25 with genetic markers 

across the whole genome, facilitated by the efforts of consortiums like HapMap project26 or 

1000 Genomes Project27 and technological innovation of genotyping arrays. GWAS can 

identify robust and replicable genotype-phenotype associations in a prior-free manner. While 

the first GWAS can be traced back to 200224, sometimes the Wellcome Trust Case Control 

Consortium (WTCCC) paper published in 200728 was taken as the start of GWAS29,30 due to 

its good design and largest sample size at the time. 

 

The basic statistical method of GWAS is a simple univariate linear or logistic regression 

model to associate genetic variants (usually SNPs) across the genome with a trait of interest. 

More sophisticated statistical methods based on linear mixed model (LMM) are used to 

control the confounders, such as the population stratification and relatedness 31-33, and handle 

large biobank-scale data34-36. To control the false positives, the data need to be quality 

controlled before the association test on individual level, genotype level, and phenotype 

level37, and a genome-wide significant (GWS) threshold of p value <5´10-8 is usually used. 

To improve the power, the genetic variants not captured by genotyping arrays are usually 

imputed to a sequenced reference panel38,39, and non-heritable covariates, such as age, sex, 

genotyping batch, need to be pre-fitted or fitted in the model40. Another way to increase the 

power of GWAS is to increase the sample size via establishing big consortia (such as 

Psychiatric GWAS Consortium (PGC)41, GIANT consortium42,43, SSGSC consortium44) to 

meta-analyse45 data from multiple cohorts or single large biobank (such as the UK 

Biobank46). As of 13 August 2020, there are 196,813 variant-trait associations passing a 

GWS threshold47 from 4,671 publications curated by the GWAS Catalog database48. 

 

After the GWS variants are initially identified, people find that the phenotypic variance 

explained by the GWS variants is much smaller than the heritability estimated from family or 

twin studies using traditional quantitative genetic methods, which is the so-called “missing 

heritability” problem49,50. Taking human height as an example51, the variance explained by 

around 42 GWS SNPs identified with a total sample size of around 60,000 in 2008 was 5% in 
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contrast to the estimate of heritability of about 80% estimated from family or twin studies. In 

2010, Yang et al52,53 proposed a method called genomic relatedness matrix (GRM) restricted 

maximum likelihood (GREML), which included all SNPs to fit a linear mixed model. They 

estimated that ~45% of variance in height could be explained by all common SNPs, 

suggesting that the heritability was not missing but hidden because of a large number of 

genetic variants with effect sizes too small to be detected in the previous GWAS52. The 

heritability estimated by all genetic variants across the genome is then called the SNP-based 

heritability54. 

 

The initial GREML method only included a single random component to model the effect 

sizes of genome-wide genetic variants (called GREML-SC). The method was subsequently 

extended to partition the heritability into contributions from different chromosomes or 

multiple sets of genetic variants stratified by functional annotations (called GREML-MC)55, 

to reduce the estimation bias by stratifying genetic variants by MAF and LD (GREML-

LDMS) 56, or to estimate the SNP-based heritability for disease traits57,58. A latest study 

incorporating both common and rare genetic variants measured by whole genome sequencing 

(WGS) using the GREML-LDMS method recovered most of the pedigree-based heritability 

estimation for human height59. 

 

There are other methods developed to estimate the SNP-based heritability. The GREML 

approach needs individual-level genotype and phenotype data, which are usually inaccessible 

due to the privacy or logistical issues60. In contrast, GWAS summary statistics data, which 

only contains estimated effect sizes, standard errors, p values, sample sizes, etc., are more 

convenient to share and access. Linkage disequilibrium score regression (LDSR) method61,62, 

also based on the GREML model, only requires GWAS summary statistics data with LD 

information from a reference sample of the same ethnicity and can dramatically reduce the 

computation time. Apart from GREML model, there are other methods based on different 

models, including the LDAK model with a SNP-specific variance assumption and related 

summary-statistics version SumHer 63, mixture distribution model using Bayesian 

statistics64,65, generalized random effect model with biobank-level data66, and Haseman-

Elston (HE) regression67,68. In addition to additive genetic variance, the SNP-based 

heritability method can also be extended to estimate dominance69,70 and epistatic71 genetic 

variances. 
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GWAS data can also be used to study the relationship between two different traits. Genetic 

correlation is a parameter to quantify the correlation of the genetic component between two 

traits72. Many SNP-based heritability estimation methods can be expanded for genetic 

correlation estimation, including the GREML approach73 and LD score regression74,75. The 

genetic correlation can be caused by many sources, including causality (sometimes called 

vertical pleiotropy), pleiotropy (sometimes called horizontal pleiotropy), and others (e.g., 

LD-induced genetic correlation)72. Mendelian Randomization (MR) is a statistical method to 

draw causal inference between two traits (exposure and outcome), which takes genetic 

variant(s) as instrumental variable(s) under some strong assumptions76,77. The methodology 

of MR is still under active development, from one sample to two samples, from one genetic 

instrument to multiple genetic instruments, from individual-level data to GWAS summary 

data, from single exposure method for one exposure and one outcome to multivariate MR 

method including multiple exposures, and also to better handle the correlated and 

uncorrelated pleiotropy effects78. 

 

1.3 Genotype-by-environment interactions (GEI) 

The GEI is an important component in the quantitative genetic model. It can be defined as 

that the effect of a genetic variant on a phenotype depends on environmental factor(s), or 

alternatively, the effect of an environmental factor on a phenotype depends on the 

genotype(s)79. Or statistically, GEI can be defined as the departure of the joint effect of 

genetic factor(s) and environmental factor(s) from the sum of their marginal effects80. GEI 

could be quantitative or qualitative80. For quantitative GEI (also called “non-crossover” 

interaction81), different environments alter the level, but not the direction of the genetic 

effect; whereas for qualitative GEI (also called “crossover” interaction), different 

environments alter the direction of the genetic effect. The quantitative GEI is tied to the scale 

of measurement, which means any quantitative GEI can be removed through a non-linear 

transformation81. 

 

The concept of GEI is thought82,83 to be traced back to Archibald Garrod’s paper in 190284 

and J. B. S. Haldane’s book in 193885. The classic and well-characterized GEI examples are 

usually for Mendelian traits or diseases83,86, including mutations in gene PAH interacted with 

phenylalanine intake in the diet on phenylketonuria (PKU), xeroderma pigmentosum (XP) 

interacted with exposure to sunlight on the risk of skin cancer, and so on. There are also 
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examples for complex traits or diseases, including NAT2 with smoking on bladder cancer87, 

FTO with physical activity on body mass index88, and ALDH2 with alcohol on esophageal 

cancer89. 

 

Identifying GEI effects in humans is difficult80,82,90,91, despite the limited number of 

successful examples mentioned above. One reason is environmental factors are challenging 

to assess80,92. Firstly, the broadest definition of environmental factors could include any 

factors apart from genetic variants, including exogenous factors (such as air pollution), 

lifestyle factors (such as diet, smoking, or physical activity), medicine-taking history, and so 

on. Secondly, environmental factors are usually multidimensional. For example, there are at 

least three dimensions to assess drinking (i.e., the frequency of drinking, the typical quantity 

of drinking, and binge drinking). Thirdly, many environmental factors change with time and 

are hard to record during a life-long course. Finally, there are usually measurement errors for 

environmental factors, especially using self-reported questionnaires. 

 

Many statistical methods are developed to detect GEI effects and applicable depending on 

different assumptions and contexts93. One method is called vQTL (to be discussed in Chapter 

2), which can be used to infer GEI, although there could be other sources contributing to 

phenotypic variability, including epistasis, environmental sensitivity, temporal fluctuation, 

and measurement errors94. 

 

There are also methods developed to estimate the overall contribution of GEI effects to 

phenotypic variance. Robinson et al. in 201795 used the method proposed by Yang et al.53 

(called GCI-GREML model), including a single genetic component and a GEI component 

with a discrete environmental factor or a continuous environmental factor stratified into 

discrete groups, and estimated that the genotype-age interaction contributes 8.1% of BMI 

variation and genotype-smoking interaction contributes 4.0% of BMI variation. Ni et al. in 

2019 proposed a multivariate reaction norm model (MRNM)96, which accounts for both GEI 

and genotype-environment correlation and allows a continuous environmental factor. The 

MRNM model was subsequently extended to be applicable for GWAS summary data (called 

GxEsum97). Dahl et al. in 2020 proposed a GxEMM model, which could accommodate 

arbitrary environmental factors and binary traits98. Kerin et al. in 202099 proposed a (Linear 

Environment Mixed Model Analysis) LEMMA model to allow multiple environmental 

factors using an environmental score (called ES) by a linear combination.   
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1.4 Epistasis 

Epistasis, the genetic interaction effect between two or more loci, is another component in 

Fisher’s partition of genetic value or variance (see section 1.1 above), although this term was 

first used by Bateson in 1909100,101. It can be additive-by-additive, additive-by-dominance, 

dominance-by-dominance, or high-order epistasis with more than two loci. 

 

It is difficult to identify the genetic variants with epistatic effects102,103. Firstly, the number of 

statistical tests for epistasis is proportional to the square of the total number of genetic 

variants, so it will create a high burden for multiple test correction. Secondly, in comparison 

with the additive effect that a marker variant can explain a proportion of LD r2 of the genetic 

variance, a marker variant can explain a proportion of r4 of the genetic variance for epistatic 

effect104. Therefore, a much larger sample size is needed to have enough power to detect 

genetic variants with epistatic effects. Thirdly, the statistical test methods for epistasis could 

be biased by other factors, like linkage disequilibrium (see Chapter 3 for one example of the 

inflation of epistasis test). 

 

The overall contribution to phenotypic variation by epistatic effects in humans is expected to 

be low theoretically105. Because the three components in Fisher’s partition of the genetic 

variation are not independent. The dominance and epistatic effects in the level of gene action 

can be largely captured by the additive component in the level of variance in the population, 

even when the epistatic value in gene action is high105. One latest empirical analysis is the 

meta-analysis of 14,558,903 monozygotic (MZ) and dizygotic (DZ) twin pairs by Polderman 

et al21. They found the correlations of MZ twins for most traits were close to twice of the 

correlations of DZ twins, which was consistent with a model that the genetic variance was 

mainly due to the additive genetic effect. Another latest estimation using SNP genotypes in 

254,679 unrelated individuals from UK Biobank did not find evidence for an epistatic 

variance for 70 traits, although the sampling variances were large71. 

 

While the evidence in the literature about epistasis in humans is weak, there are multiple lines 

of evidence for epistatic effects from more controllable model species106,107. For example, 

Domingo et al.108 conducted an experiment covering 5,184 genotypes in 10 positions of 

tRNA gene using yeast and found widespread pairwise and high-order epistatic effects on 
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fitness. And another intuitive reason for the existence of epistasis is the interconnected 

complicated biological system, including protein-protein interactions and functional 

pathways106. 

 

1.5 Prediction of complex traits 

Apart from partitioning the phenotypic variance into genetic and environmental components 

and identifying the genetic variants associated with traits, another active research direction is 

to predict human complex traits or diseases, which is key to achieve the goal of personalized 

and precision medicine109,110. In the early years of the GWAS era, genetic predictors were 

built based on GWS loci and shown relatively low prediction accuracy, mainly because only 

a small proportion of phenotypic variance was explained by the GWS loci111. To overcome 

this limitation, genetic risk prediction based on a polygenic model was proposed112 and 

used113, which accumulated the genetic effects of many variants across the genome. 

 

The simplest way to construct a genetic predictor (called polygenic risk score, PRS) across / 

independent genetic markers is the weighted sum of genotype values (0(…0)): 

23) =45*0*
)

*+(
 

where 5* is the estimated genetic SNP effect by GWAS. Then the prediction accuracy 

evaluated by the proportion of variance explained by the genetic predictor (6') can be 

quantified as114,115: 

6' = ℎ)'
1 +//(:ℎ)' )

< ℎ)'  

where : is the discovery sample size and ℎ)'  is the variance explained by the genetic markers 

included. So the accuracy of genetic prediction can be improved by increasing the sample 

size (N) with an upper boundary of SNP-heritability (ℎ)' ). 

 

In addition, more sophisticated statistical methods and software are developed to improve the 

prediction accuracy. The simple method is called P+T method113, which selects SNPs by LD 

pruning and p-value thresholding. A validation dataset is used to test a range of p-value 

thresholds and choose the p-value with the highest prediction accuracy. BLUP116 (i.e. best 

linear unbiased predictor) is a method to estimate the parameters in the traditional linear 

mixed model and then extended to create a genetic predictor based on GWAS summary data 
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(also called SBLUP117). LDpred118 is a Bayesian method using a point-normal mixture prior 

to model the GWAS summary data and the extended LDpred-funct119 claims to further 

improve the prediction accuracy by incorporating the functional annotations. BayesR120 and 

the following summary-data version SBayesR2 are also Bayesian methods based on a mixture 

distribution with multiple components (four components as default). Other genetic prediction 

methods include lassosum121, PRS-CS122, and NPS123.  

 

The improving prediction accuracy has made the practical utility of PRS possible110,124-126. 

For example, Khera et al.124 constructed PRS for five common diseases and found much 

more individuals based on PRS in comparison with an equivalent risk based on relative 

monogenic mutations. Now more studies are trying to combine the PRS with established 

epidemiology risk factors/models (see Chapter 4 for more information about combining 

genetic and environmental predictors).  
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Genotype-by-environment interactions inferred from genetic effects on phenotypic 

variability in the UK Biobank 

 

2.1 Abstract 

Genotype-by-environment interaction (GEI) is a fundamental component in understanding 

complex trait variation. However, it remains challenging to identify genetic variants with GEI 

effects in humans largely because of the small effect sizes and the difficulty of monitoring 

environmental fluctuations. Here, we demonstrate that GEI can be inferred from genetic 

variants associated with phenotypic variability in a large sample without the need of 

measuring environmental factors. We performed a genome-wide variance quantitative trait 

locus (vQTL) analysis of ~5.6 million variants on 348,501 unrelated individuals of European 

ancestry for 13 quantitative traits in the UK Biobank, and identified 75 vQTLs for 9 traits 

passing an experiment-wise significant threshold of P<2.0´10-9 (GWS threshold of 5´10-8 

divided by the effective number of independent traits; see Methods), especially for those 

related to obesity. Direct GEI analysis with five environmental factors showed that the 

vQTLs were strongly enriched with GEI effects. Our results indicate pervasive GEI effects 

for obesity-related traits and demonstrate the detection of GEI without environmental data. 

 

2.2 Introduction 

Most human traits are complex because they are affected by many genetic and environmental 

factors as well as potential interactions between them6,7. Despite the long history of 

effort82,84,85, there has been limited success in identifying genotype-by-environment 

interaction (GEI) effects in humans80,82,90,91. This is likely because many environmental 

exposures are unknown or difficult to record during the life course, and because the effect 

sizes of GEI are small given the polygenic nature of most human traits13,127,128 so that the 

sample sizes of most previous studies are not large enough to detect the small GEI effects. 

For model complex traits such as body mass index (BMI), GEI analyses have been limited to 

GEI tests at known BMI loci88,129,130 or estimation of GEI variance captured by all common 

SNPs55,95. 

 

GEI effect of a genetic variant on a quantitative trait could lead to differences in variance of 

the trait among groups of individuals with different variant genotypes (Figure 2-1a-b and 

Supplementary Note 2-1). GEI can therefore be inferred from a variance quantitative trait 
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locus (vQTL) analysis131, although there are other explanations for an observed vQTL such 

as direct effect on phenotypic dispersion (e.g., induced by selection132), epistasis131, and 

phantom vQTL133,134. Unlike the classical quantitative trait locus (QTL) analysis that tests the 

allelic substitution effect of a variant on the mean of a phenotype (Figure 2-1c), vQTL 

analysis tests the allelic substitution effect on the trait variance (Figure 2-1b or d). In 

comparison to the analyses that perform direct GEI tests, vQTL analysis is more flexible 

because it does not require measures of environmental factors and thus can be performed in a 

very large sample where the environmental factors are unknown, unavailable or 

incomplete135. Of course, the vQTL test is less powerful than the direct GEI test if the 

corresponding environmental factor has indeed been measured on all the genotyped 

individuals in the sample131. Although there had been empirical evidence for the genetic 

control of phenotypic variance in livestock for decades136,137, it was not until recent years that 

genome-wide vQTL analysis was applied in humans131,138,139, and only a handful of vQTLs 

have been identified for a limited number of traits (e.g. the FTO locus for BMI139) owing to 

small effect sizes of vQTLs. The availability of data from large biobank-based genome-wide 

association studies (GWAS)46,140 provide an opportunity to interrogate the genome for vQTLs 

for a range of phenotypes in cohorts with unprecedented sample size. 

 

 
Figure 2-1 Schema of the differences in mean or variance among genotype 

groups in the presence of GEI, QTL and vQTL effects. 

The phenotypes of 1,000 individuals were simulated based on a genetic variant 

(MAF = 0.3) with a) both QTL and GEI effects, (b) GEI effect only (no QTL 
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effect), (c) QTL effect only (no GEI or vQTL effect), or (d) vQTL only (no QTL 

effect). 

 

On the other hand, statistical methods for vQTL analysis are not entirely mature135. There 

have been a series of classical non-parametric methods141, originally developed to detect 

violation of the homogeneous variance assumption in linear regression model, which can be 

used to detect vQTLs, including the Bartlett’s test142, the Levene’s test143,144 and the Fligner-

Killen (FK) test145. Recently, more flexible parametric models have been proposed, including 

the double generalized linear model (DGLM)94,146,147 and the likelihood ratio test for variance 

effect (LRTV)133. In addition, it has been shown that transformation of phenotype that alters 

phenotype distribution also has an influence on the power and/or false positive rate (FPR) of 

a vQTL analysis138,148. 

 

In this study, we calibrated the most commonly used statistical methods for vQTL analysis by 

extensive simulations. We then used the best performing method to conduct a genome-wide 

vQTL analysis for 13 quantitative traits in 348,501 unrelated individuals using the UK 

Biobank (UKB) data46. We further investigated whether the detected vQTLs are enriched for 

GEI by conducting a direct GEI test for the vQTLs with five environmental factors (or 

covariates). 

 

2.3 Results 

Evaluation of the vQTL methods by simulation 

We used simulations to quantify the FPR and power (i.e., true positive rate) for the vQTL 

methods and phenotype processing strategies (Methods). We first simulated a quantitative 

trait based on a simulated single nucleotide polymorphism (SNP), i.e., a single-SNP model, 

under a number of different scenarios, namely: 1) five different distributions for the random 

error term (i.e., individual-specific environment effect); 2) four different types of SNP with 

or without the effect on mean or variance (Methods). We used the simulated data to compare 

the four most widely used vQTL methods, namely Bartlett’s test142, Levene’s test143,144, the 

FK test145 and the DGLM94,146,147. We observed no inflation in FPR for the Levene’s test 

under the null (i.e., no vQTL effect) regardless of the skew or kurtosis of the phenotype 

distribution or the presence or absence of SNP effect on the mean (Figure 2-2a). These 

findings are in line with the results from previous studies138,141,149 that the Levene’s test is 
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robust to the distribution of the phenotype. The FPR of the Bartlett’s test or DGLM was 

inflated if the phenotype distribution was skewed or heavy-tailed (Figure 2-2a). The FK test 

seemed to be robust to kurtosis but vulnerable to skewness of the phenotype distribution 

(Figure 2-2a). Since the Levene’s test performed the best in the simulations, for this test we 

investigated the impact of  non-linear transformations of the phenotype by considering 

logarithm (log(y)), square (y2), cube (y3) and rank-based inverse-normal transformation 

(RINT) and found that these non-linear transformations could result in inflated FPR (Figure 

2-2b). The non-linear transformation, including RINT, could create a departure from the pure 

additive genetic model and give rise to inflated false positive rate for the vQTL test. 

 

 
Figure 2-2 Evaluation of (a) statistical methods and (b) phenotype processing 

strategies for vQTL analysis by simulation based on a single-SNP model. 

Phenotypes of 10,000 individuals were simulated based on one SNP and one error 

term in a single-SNP model (Methods). The SNPs effects were simulated under 

four scenarios: 1) effect on neither mean nor variance (nei), 2) effect on mean 

only (mean), 3) effect on variance only (var), or 4) effect on both mean and 

variance (both). The error term was generated from 5 different distributions: 

normal distribution, t-distribution with degree of freedom (df) = 10 or 3, or χ' 

distribution with df = 15 or 1. Four statistical test methods, i.e. the Bartlett’s test 

(Bart), the Levene’s test (Lev), the Fligner-Killen test (FK) and the DGLM, were 
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used to detect vQTLs. In panel b, the Levene’s test was used to analyse 

phenotypes processed using five strategies, i.e., raw phenotype (raw), raw 

phenotype adjusted for covariates (adj), rank-based inverse-normal 

transformation after adj (rint), logarithm transformation after adj (log), square 

transformation after adj (sq), and cube transformation after adj (cub). Positive rate 

is defined as the number of vQTLs with p < 0.05 divided by the total number of 

tests across 1,000 simulations, which is the FPR under the null (“nei” and 

“mean”) and power under the alternative (“var” and “both”). The red horizontal 

line represents an FPR of 0.05. 

 

To simulate more complex scenarios, we used a multiple-SNP model with two covariates 

(age and sex) with effects on both mean and variance (see Methods), and different numbers 

of independent SNPs (Figure 2-3). The results were similar to those described above, 

although the power of the Levene’s test decreased with an increase of the number of causal 

SNPs (Figure 2-3a). Non-linear transformations led to an inflated FPR when the variance 

explained by a QTL effect (i.e., SNP effect on mean) was relatively large and a loss of power 

of vQTL detection when the per-QTL variance explained was relatively small although 

logarithm transformation did not seem affect power (Figure 2-3b). These results also 

suggested that pre-adjusting the phenotype by covariates slightly increased the power (Figure 

2-3b). Based on the results of these simulations we used the Levene’s test, a one-way analysis 

of variance (ANOVA) to test for absolute deviations from the medians (Methods), for real 

data analysis with the phenotypes pre-adjusted for covariates without any non-linear 

transformation. 
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Figure 2-3 Evaluation of (a) statistical methods and (b) phenotype processing 

strategies for vQTL analysis by simulation based on a multiple-SNP model. 

Phenotypes of 10,000 individuals were simulated based on different number of 

causal independent SNPs (i.e. 4, 40 or 80), two covariates (i.e. sex and age) and 

one error term in a multiple-SNP model (Methods). The SNP effects were 

simulated under four scenarios: 1) effect on neither mean nor variance (nei), 2) 

effect on mean only (mean), 3) effect on variance only (var), or 4) effect on both 
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mean and variance (both). The error term was generated from five different 

distributions: normal distribution, t-distribution with df = 10 or 3, or >' 

distribution with df = 15 or 1. In panel a, four statistical test methods, i.e., the 

Bartlett’s test (Bart), the Levene’s test (Lev), the Fligner-Killen test (FK) and the 

DGLM, were used to detect vQTLs. In panel b, the Levene’s test was used to 

analyse phenotypes processed using six strategies, i.e., raw phenotype (raw), raw 

phenotype adjusted for covariates (adj), rank-based inverse-normal 

transformation after adj (rint), logarithm transformation after adj (log), square 

transformation after adj (sq), and cube transformation after adj (cub). Positive rate 

is defined as the number of vQTLs with p < 0.05 divided by the total number of 

tests across 1,000 simulations, which is the FPR under the null (“nei” and 

“mean”) and power under the alternative (“var” and “both”). The red horizontal 

line represents an FPR of 0.05. 

 

Genome-wide vQTL analysis for 13 UKB traits 

We performed a genome-wide vQTL analysis using the Levene’s test with 5,554,549 

genotyped or imputed common variants on 348,501 unrelated individuals of European 

ancestry for 13 quantitative traits in the UKB46 (Methods, Table 2-1 and Figure 2-4). For 

each trait, we pre-adjusted the phenotypic mean for age and the first 10 principal components 

(PCs, derived from SNP data) and standardised the residuals to z-scores (i.e., mean 0 and 

variance 1) in each gender group (Methods). This process removed not only the effects of age 

and the first 10 PCs on the phenotype but also the differences in mean and variance between 

the two genders. We excluded individuals with adjusted phenotypes more than 5 standard 

deviations (SD) from the mean and removed SNPs with minor allele frequency (MAF) 

smaller than 0.05 to avoid potential false positive associations due to the coincidence of a 

low-frequency variant with an outlier phenotype (see Figure 2-5 for an example). We 

acknowledge that this process could potentially result in a loss of power, but this can be 

compensated for by the use of a very large sample (n ~ 350,000). 

 

Table 2-1 Descriptive summary of the quantitative traits and used in this 

study from the UKB. 

Trait Description Sample size UDIa 

HT Standing height 347,086 50-0.0 
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FVC Forced vital capacity 317,222 3062-0.0 

FEV1 
Forced expiratory volume in 1-

second 
317,285 3063-0.0 

FFRb FEV1 and FVC ratio 316,614 NA 

BMD 
Heel bone mineral density T-score, 

automated 
197,261 78-0.0 

BW Birth weight 197,758 20022-0.0 

BMI Body mass index (BMI) 346,393 21001-0.0 

WC Waist circumference 347,158 48-0.0 

HC Hip circumference 346,781 49-0.0 

WHRc Waist to Hip Ratio 347,134 NA 

WHRadjBMId WHR adjusted for BMI 346,535 NA 

BFP Body fat percentage 341,632 23099-0.0 

BMR Basal metabolic rate 341,584 23105-0.0 

Note: a) UDI, the Unique Data Identifier in the UKB dataset; b) FFR is the ratio 

of FEV1 to FVC; c) WHR is the ratio of waist circumference to hip 

circumference; d) WHRadjBMI is the residual after adjusting WHR for BMI. 
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Figure 2-4 Phenotypic correlations among 13 quantitative traits in the UKB. 

The Pearson’s correlation coefficient was calculated between each pair of (a) the 

processed phenotypes. The order shown on the plot above was determined by 

hierarchical cluster analysis using the R function hclust(). 
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Figure 2-5 Spurious vQTL association due to the coincidence of a minor 

allele with a phenotypic outlier.  

This is an example that a spurious vQTL signal (PvQTL = 4.48´10-9) at a low-

MAF variant (MAF = 0.012) is caused by the coincidence of a minor allele with a 

phenotypic outlier for FVC. The variance of the phenotype (after covariates 

adjustment and standardisation) are 1.00, 0.83 and 20.20 in the three genotype 

groups of rs11102024 respectively. Note that for all the other vQTL results 

presented in this paper are from analyses excluding individuals with adjusted 

phenotypes more than 5 SD from the mean and SNPs with MAF < 0.05. 

 

 

With an experiment-wise significant threshold 2.0´10-9 (i.e., 1´10-8/5.0 with 1´10-8 being a 

more stringent genome-wide significant threshold recommended by recent studies150,151 and 

5.0 being the effective number of independent traits (Supplementary Note 2-4)), we identified 

75 vQTLs (independent to linkage disequilibrium (LD) r2 < 0.01 within trait) across the 9 

traits (Figure 2-6, Table 2-2, and Table 2-3). There was no vQTL for height, consistent with 
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the observation in a previous study139. We identified more than 15 vQTLs for each of the 

three obesity-related traits, i.e., BMI, waist circumference (WC), and hip circumference (HC) 

( 

 

Table 2-2). The 75 vQTLs were located at 41 near-independent loci after excluding one of 

each between-trait pair of top vQTL SNPs (i.e., the SNP with lowest vQTL p-value at each 

vQTL association peak) with LD r2 > 0.01, suggesting that some of the loci were associated 

with the phenotypic variance of multiple traits. For example, the FTO locus was associated 

with the phenotypic variance of WC, HC, BMI, body fat percentage (BFP) and basal 

metabolic rate (BMR) (Figure 2-7) and the vQTL associations were likely to be driven by a 

shared causal variant having pleiotropic vQTL effects on multiple traits (Table 2-4). For the 

lung-function-related traits, there was no significant vQTL for forced expiratory volume in 

one second (FEV1) and forced vital capacity (FVC) but were 3 vQTLs for FEV1/FVC ratio 

(FFR). There was no evidence for an effect of MAF on vQTL test-statistic at the 41 

independent loci (Figure 2-8), consistent with the observation in a previous study139. 
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Figure 2-6 Manhattan plots of genome-wide vQTL analysis for 13 traits in 

the UKB. 

For each of the 13 traits (see  

 

Table 2-2 for full names of the traits), test statistics (-log10(PvQTL)) of all common 

(MAF ³ 0.05) SNPs from the vQTL analysis are plotted against their physical 

positions. The dash line represents the genome-wide significance level 1.0´10-8 

and the solid line represents the experiment-wise significance level 2.0´10-9. For 

graphical clarity, SNPs with PvQTL < 1´10-25 are omitted, SNPs with PvQTL < 

2.0´10-9 are colour-coded in orange, the top vQTL SNP for each locus is 

represented by a diamond, and the remaining SNPs on odd and even chromosome 

are colour-coded in grey and blue, respectively. 
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Table 2-2 The number of experiment-wise significant vQTLs or QTLs for 

the 13 UKB traits. 

Trait Description 

Distribution of 

raw phenotype 

Distribution of 

processed 

phenotype 

Number of 

independent 

vQTLs for 

each trait 

Number of 

independent 

QTLs for 

each trait 

HT Standing height 
  

0 1063 

FVC Forced vital capacity 
  

0 325 

FEV1 
Forced expiratory 

volume in 1-second    
0 266 

FFR FEV1 and FVC ratio 
  

3 221 

BMD 

Heel bone mineral 

density T-score, 

automated 
  

6 267 

BW Birth weight 
  

1 57 

BMI Body mass index 
  

22 271 

WC Waist circumference 
  

16 196 

HC Hip circumference 
  

16 249 

WHR Waist to Hip Ratio 
  

1 157 

WHRadj

BMI 

WHR adjusted for 

BMI   
0 187 

BFP Body fat percentage 
  

5 249 

BMR Basal metabolic rate 
  

5 465 

Total    75 3,973 
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Table 2-3 Seventy-five experiment-wise significant vQTLs for 9 UKB traits. 

Trait CHR SNP bp 
Nearest 

Gene 
MAF 

vQTL  

p-value 

QTL 

p-value 

Phenotypic variance 

in each genotype 

group 

Phenotypic mean in 

each genotype group 

FFR 4 rs6537292 145469968 HHIP 0.394 1.97E-14 3.58E-122a 1.0217,0.9936,0.9561 -0.0453,0.0091,0.0787 

 5 rs12374521 147836880 FBXO38 0.456 7.10E-10 1.60E-58 1.0223,0.9978,0.97 -0.039,0.0055,0.0417 

 15 rs56077333 78899003 CHRNA3 0.325 1.09E-14 2.11E-06 0.9757,1.0107,1.0588 0.0072,-0.0019,-0.0225 

BMD 1 rs1414660 240586695 GREM2 0.192 7.83E-14 1.28E-94 0.977,1.0362,1.0452 -0.0322,0.0523,0.1304 

 6 rs9371221 151885986 CCDC170 0.101 4.59E-10 1.30E-76 1.0097,0.9502,0.9408 0.02,-0.0817,-0.1479 

 6 rs3020332 152008924 ESR1 0.45 5.42E-14 8.94E-130 0.966,0.997,1.0429 -0.074,0.0126,0.0795 

 7 rs4576334 38153747 STARD3NL 0.196 2.36E-13 2.60E-86 0.9784,1.0308,1.0684 -0.0325,0.0511,0.1152 

 7 rs10254825 120956440 WNT16 0.391 2.01E-45 0 0.9279,1.0107,1.057 -0.1455,0.05,0.1903 

 11 rs603140 86884615 TMEM135 0.312 1.61E-12 4.48E-98 1.0149,0.9924,0.9333 0.0417,-0.0204,-0.1142 

BW 3 rs13322435 156795468 CCNL1 0.402 9.71E-10 6.21E-48 1.0287,0.9847,0.9742 0.0376,-0.0072,-0.0585 

BMI 1 rs545608 177899121 SEC16B 0.206 3.88E-17 1.97E-63 0.9801,1.0251,1.0835 -0.0202,0.0282,0.0847 

 1 rs6689335 219628682 LYPLAL1 0.419 2.86E-12 4.73E-08 1.0249,0.9907,0.972 0.0106,-0.0013,-0.0167 

 2 rs62104180 466003 FAM150B 0.05 1.22E-11 3.57E-51 1.0054,0.9461,0.8598 0.0083,-0.075,-0.1488 

 2 rs6751993 635864 TMEM18 0.167 3.50E-18 3.31E-65 1.0155,0.9707,0.9188 0.0197,-0.0361,-0.0912 

 2 rs10203386 25136866 ADCY3 0.452 1.33E-11 8.45E-43 0.9768,0.9994,1.0333 -0.0272,3e-04,0.0404 

 2 rs1641155 58965211 FANCL 0.311 1.25E-09 4.42E-17 0.9872,1.0092,1.0266 -0.0141,0.0108,0.0266 
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 3 rs1225053 131642852 CPNE4 0.264 1.69E-12 2.85E-17 0.9863,1.009,1.0577 -0.0109,0.0073,0.0444 

 4 rs10016841 20213781 SLIT2 0.133 1.95E-09 2.11E-13 0.9898,1.0272,1.0621 -0.007,0.0187,0.0468 

 4 rs12507026 45181334 GNPDA2 0.434 1.84E-11 6.78E-41 0.9762,0.9998,1.0381 -0.0243,-6e-04,0.0435 

 6 rs34817112 27176628 PRSS16 0.134 8.48E-17 3.51E-08 0.9857,1.0416,1.0635 -0.0054,0.0154,0.026 

 6 rs3132947 32176782 GPSM3 0.218 2.36E-13 8.53E-15 0.9834,1.0214,1.0563 -0.0096,0.0119,0.038 

 6 rs987237 50803050 TFAP2B 0.18 2.18E-16 7.51E-43 0.9842,1.0249,1.0845 -0.0148,0.0247,0.0833 

 8 rs17150703 9745798 MSRA 0.104 1.38E-09 2.05E-11 0.9925,1.0243,1.1486 -0.0053,0.0196,0.0583 

 10 rs4132670 114767771 TCF7L2 0.312 3.88E-11 2.75E-15 1.0205,0.986,0.9606 0.0133,-0.0084,-0.0263 

 11 rs2049045 27694241 BDNF 0.187 6.91E-10 8.20E-42 1.0115,0.9794,0.9461 0.0162,-0.0288,-0.0563 

 12 rs7132908 50263148 BCDIN3D 0.385 3.73E-11 3.94E-32 0.9791,1.0024,1.0429 -0.0211,0.0046,0.0392 

 12 rs11057413 124489162 
ZNF664-

FAM101A 
0.334 1.05E-10 6.30E-09 0.981,1.0071,1.0456 -0.0104,0.0064,0.0173 

 16 rs4072402 28937259 RABEP2 0.337 5.55E-12 2.72E-28 0.9802,1.0076,1.0463 -0.0185,0.0081,0.0393 

 16 rs12716979 31011821 STX1B 0.375 1.40E-16 7.30E-24 1.031,0.9897,0.9517 0.0186,-0.0053,-0.0328 

 16 rs11642015 53802494 FTO 0.404 1.73E-73 7.43E-217 0.9398,1.0013,1.1095 -0.0555,0.005,0.1062 

 18 rs10871777 57851763 MC4R 0.236 1.73E-19 3.01E-81 0.9767,1.0232,1.0751 -0.0248,0.0262,0.0897 

 19 rs2238691 46179043 GIPR 0.194 3.46E-15 2.31E-32 1.0176,0.9706,0.9309 0.0142,-0.0231,-0.0537 

WC 1 rs10913469 177913519 SEC16B 0.205 3.80E-14 4.50E-44 0.9848,1.0189,1.0695 -0.0166,0.0229,0.0724 

 2 rs62104180 466003 FAM150B 0.05 3.93E-14 4.02E-44 1.0061,0.9417,0.8124 0.0077,-0.0689,-0.1472 

 2 rs13412194 653245 TMEM18 0.172 9.76E-15 1.39E-55 1.0134,0.9726,0.9343 0.0176,-0.0341,-0.0761 

 3 rs7649970 12392272 PPARG 0.121 5.60E-10 5.30E-10 0.9915,1.0245,1.0873 -0.0057,0.0186,0.0314 
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 4 rs12507026 45181334 GNPDA2 0.434 2.39E-11 9.40E-31 0.9757,1.0016,1.0355 -0.0207,-8e-04,0.0377 

 6 rs13198716 26582035 ABT1 0.109 4.89E-15 0.0305 0.99,1.0363,1.0714 -0.002,0.0078,0.0046 

 6 rs1062070 32148031 RNF5 0.199 7.20E-12 6.06E-10 0.9862,1.0221,1.043 -0.0079,0.0132,0.0217 

 6 rs4472337 34769765 UHRF1BP1 0.155 5.60E-11 1.78E-23 0.9893,1.0237,1.0573 -0.0105,0.024,0.0493 

 6 rs987237 50803050 TFAP2B 0.18 5.43E-12 1.09E-34 0.9874,1.0199,1.0669 -0.0137,0.0239,0.0663 

 7 rs12667251 130449458 KLF14 0.436 6.82E-12 1.91E-05 1.025,0.9962,0.9637 0.0096,-0.0023,-0.0109 

 12 rs7133378 124409502 CCDC92 0.318 6.25E-10 0.506 0.9845,1.0071,1.0384 0.001,1e-04,-0.0034 

 16 rs8056890 28897452 ATP2A1 0.355 5.57E-15 8.85E-40 0.9759,1.009,1.0433 -0.0234,0.0094,0.0433 

 16 rs34898535 31025641 STX1B 0.378 1.11E-11 6.24E-22 1.0246,0.991,0.9616 0.0173,-0.0047,-0.0316 

 16 rs1421085 53800954 FTO 0.404 3.27E-52 3.21E-166 0.9501,1.0048,1.0807 -0.0481,0.0038,0.0936 

 18 rs11152213 57852948 MC4R 0.236 5.62E-15 1.39E-70 0.9828,1.0153,1.0646 -0.0224,0.0224,0.0898 

 19 rs1800437 46181392 GIPR 0.194 2.05E-11 1.19E-24 1.0137,0.9791,0.93 0.0124,-0.0203,-0.0445 

HC 1 rs6685593 203516075 OPTC 0.495 5.99E-11 2.47E-12 0.9682,1.0032,1.0238 -0.016,-3e-04,0.0181 

 1 rs2605098 219643649 LYPLAL1 0.338 1.11E-20 3.87E-38 0.9723,1.0085,1.0687 -0.0209,0.0081,0.0483 

 2 rs62104180 466003 FAM150B 0.05 1.58E-09 5.56E-45 1.0054,0.9447,0.9202 0.0078,-0.07,-0.1422 

 2 rs6751993 635864 TMEM18 0.167 3.84E-12 1.43E-58 1.0142,0.9714,0.932 0.0186,-0.0337,-0.0883 

 2 rs10200566 25130462 ADCY3 0.451 2.32E-10 2.29E-18 0.9811,0.9976,1.0342 -0.0171,0,0.026 

 6 rs34158769 26336572 BTN3A2 0.104 5.06E-15 4.20E-13 0.9881,1.0436,1.0925 -0.0061,0.0238,0.0417 

 6 rs3132947 32176782 GPSM3 0.218 5.34E-11 2.52E-24 0.9851,1.019,1.049 -0.0132,0.0176,0.0429 

 6 rs72891717 50858235 TFAP2B 0.169 6.03E-10 1.10E-36 0.9869,1.0226,1.0786 -0.0134,0.0247,0.0784 

 6 rs141783576 127439897 RSPO3 0.067 1.57E-10 4.72E-32 1.0064,0.9482,0.994b 0.0079,-0.0512,-0.0833 
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 7 rs17789506 130445574 KLF14 0.493 2.80E-11 1.87E-18 0.9676,1.0001,1.0321 -0.0189,-0.0019,0.0234 

 12 rs10846580 124415453 CCDC92 0.337 7.64E-12 9.27E-17 0.9793,1.0122,1.0302 -0.016,0.0106,0.0209 

 16 rs8056890 28897452 ATP2A1 0.355 1.27E-09 1.71E-41 0.9762,1.0105,1.0362 -0.0239,0.0096,0.0444 

 16 rs34898535 31025641 STX1B 0.378 2.57E-12 1.58E-27 1.0248,0.9945,0.9502 0.0198,-0.0054,-0.0352 

 16 rs1421085 53800954 FTO 0.404 1.65E-48 2.05E-152 0.9486,1.0029,1.0909 -0.0462,0.0039,0.0893 

 18 rs11152213 57852948 MC4R 0.236 2.39E-16 1.44E-72 0.98,1.0189,1.0704 -0.0237,0.0257,0.0817 

 19 rs2238691 46179043 GIPR 0.194 4.52E-11 9.80E-20 1.0162,0.9727,0.9364 0.0105,-0.0164,-0.0467 

WHR 5 rs459193 55806751 C5orf67 0.253 2.86E-13 1.75E-19 0.9859,1.0102,1.0584 -0.0128,0.0129,0.0354 

BFP 1 rs2820468 219673705 LYPLAL1 0.345 3.76E-11 3.46E-21 0.9824,1.0063,1.0364 -0.0164,0.0066,0.0328 

 2 rs1128249 165528624 GRB14 0.392 1.93E-09 2.32E-18 0.9819,1.0045,1.0279 -0.0165,0.0039,0.0275 

 3 rs900399 156798732 CCNL1 0.397 1.82E-09 0.000121 1.0198,0.9932,0.9746 0.0065,-4e-04,-0.0138 

 6 rs2523625 31315648 HLA-B 0.331 2.69E-10 0.0215 0.9852,1.0071,1.0331 -0.0049,0.0039,0.0041 

 16 rs62033406 53824226 FTO 0.411 2.15E-11 1.44E-91 0.9806,0.9991,1.0359 -0.0367,0.0025,0.0677 

BMR 6 rs10456362 28221816 ZKSCAN4 0.161 1.48E-09 1.63E-09 0.99,1.0252,1.0064 -0.0069,0.0163,0.0186 

 11 rs80083564 27733143 BDNF 0.136 1.15E-09 2.32E-22 0.9895,1.0273,1.0718 -0.0092,0.0242,0.0657 

 12 rs78719460 133395038 GOLGA3 0.31 1.66E-09 1.92E-12 0.984,1.0063,1.0467 -0.0108,0.0054,0.0289 

 16 rs1421085 53800954 FTO 0.404 8.95E-47 9.23E-154 0.9561,1.0008,1.0805 -0.0469,0.0041,0.09 

 18 rs476828 57852587 MC4R 0.237 1.87E-20 1.35E-148 0.9775,1.0195,1.0716 -0.0351,0.0388,0.1125 

Note: a) p values smaller than 2.0´10-9 are highlighted in pink; b) vQTLs with non-additive genetic effect on variance are 

highlighted in yellow.
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Figure 2-7 The vQTL regional plot at the FTO locus for 5 traits.  

For each of the 5 traits for which the phenotypic variance is significantly 

associated with the FTO locus, vQTL test statistics (-log10(PvQTL)) are plotted 

against SNP positions surrounding the top vQTL SNP (represented by a purple 

diamond) at the FTO locus. SNPs in different levels of LD with the top vQTL 

SNP are shown in different colours. The RefSeq genes in the top panel are 

extracted from the UCSC Genome Browser (URLs). 
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Table 2-4 Colocalization and HEIDI tests for the vQTL associations at the 

FTO locus for the 5 traits.  

 
BMI WC HC BFP BMR 

BMI - 99.50% 99.60% 96.30% 99.60% 

WC 0.959 - 99.50% 96.30% 99.50% 

HC 0.834 0.958 - 96.30% 99.60% 

BFP 0.663 0.535 0.689 - 96.30% 

BMR 0.793 0.887 0.867 0.463 - 

We used the COLOC152 method implemented in R and the HEIDI method153 

implemented in SMR (URLs) to test whether the vQTL associations at the FTO 

locus for the 5 traits as shown in panel (b) are due to the same underlying causal 

variant. The COLOC and HEIDI analyses were performed for each pair of traits. 

Note that we convert vQTL p-values to vQTL effect sizes and standard errors 

using the method described in Zhu et al. 153 (with the direction of each vQTL 

effect determined by comparing the phenotypic variance among the genotype 

classes of a SNP) for the HEID analysis. The COLOC PP4 values (up-right off-

diagonal), the posterior possibility for hypothesis 4 (i.e., association signals at a 

locus for two traits are driven by a shared causal variant), were all greater than 

80%, and the HEIDI p-values (down-left off-diagonal), testing against the null 

hypothesis that the association signals for two traits at a locus are driven by the 

same set of causal variants, were all larger than 0.05. 
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Figure 2-8 A plot of test statistic (-log10(PvQTL)) against MAF for the 41 

independent vQTLs across traits. 

 

The Levene’s test assesses the difference in variance among three genotype groups free of the 

assumption about additivity (i.e., the vQTL effect of carrying two copies of the effect allele is 

not assumed to be twice that carrying one copy). We found two vQTLs (i.e., rs141783576 

and rs10456362) potentially showing non-additive genetic effect on the variance of HC and 

BMR, respectively (Table 2-3). 

 

To demonstrate the vulnerability of vQTL analysis to non-linear transformations in real data, 

we performed genome-wide vQTL analysis for height squared and cubed. There was no 

genome-wide significant vQTL for height squared but one genome-wide significant vQTL 

for height cubed, which was very likely to be driven by a strong QTL signal for height 

(PQTL(Height)=4.35´10-150) (Figure 2-9 and Figure 2-10), consistent with our simulation results 

that non-linear transformations could inflate the vQTL test-statistics in the presence of a 

strong QTL signal (Figure 2-2b and Figure 2-3b). Although we have not applied any non-

linear transformation to the UKB traits, some of them are non-linear functions of other traits, 

i.e., BMI (= WT/HT2), FFR (= FEV1/FVC) and WHR (= WC/HC). We therefore explored 

whether the BMI, FFR and WHR vQTLs were driven by the non-linear functions by testing 
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the variance effects of the BMI, FFR and WHR vQTLs on 1/HT2, 1/FVC and 1/HC, 

respectively. There were 26 tests in total, none of which reached the experiment-wise 

significance level (i.e., 2.0´10-9) used to claim vQTLs in this study and 23 of which had a p-

value larger than 0.05 (Table 2-5), suggesting that the BMI, FFR and WHR vQTLs were not 

driven by the non-linear functions. Although the variance effect of an FFR vQTL 

(rs56077333) on 1/FVC was significant after correcting for 26 tests (p = 5.11´10-6; Table 

2-5), the effect of rs56077333 on the variance of 1/FVC was not large enough to drive the 

vQTL signal for FFR and rs56077333 has a known GEI effect on lung function (see below 

for more details). 

 

 

Figure 2-9 Manhattan plots of genome-wide vQTL analysis for height 

squared in the UKB.  

Test statistics (-log10(PvQTL)) of all common (MAF³0.05) SNPs from the vQTL 

analysis are plotted against their physical positions. The blue horizontal line 

represents the genome-wide significance level 1.0´10-8 and the red horizontal line 

represents the experiment-wise significance level 2.0´10-9. 
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Figure 2-10 Manhattan plots of genome-wide vQTL analysis for height 

cubed in the UKB. 

Test statistics (-log10(PvQTL)) of all common (MAF³0.05) SNPs from the vQTL 

analysis are plotted against their physical positions. The blue horizontal line 

represents the genome-wide significance level 1.0´10-8 and the red horizontal line 

represents the experiment-wise significance level 2.0´10-9. 

 

Table 2-5 Testing for the variance effects of the BMI, WHR and FFR vQTLs 

on 1/HT2, 1/HC and 1/FVC respectively. 

vQTL test SNP vQTL p-value 

BMI - 1/HT2 rs545608 4.42E-01 

 rs6689335 2.00E-01 

 rs62104180 4.31E-02 

 rs6751993 2.97E-01 

 rs10203386 6.71E-03 

 rs1641155 6.74E-01 

 rs1225053 1.90E-01 
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 rs10016841 3.98E-01 

 rs12507026 9.08E-01 

 rs34817112 2.08E-01 

 rs3132947 3.90E-01 

 rs987237 7.39E-01 

 rs17150703 1.24E-01 

 rs4132670 7.29E-01 

 rs2049045 6.00E-01 

 rs7132908 9.29E-01 

 rs11057413 1.71E-01 

 rs4072402 1.99E-01 

 rs12716979 1.73E-01 

 rs11642015 7.65E-01 

 rs10871777 8.46E-01 

 rs2238691 9.75E-01 

WHR - 1/HC rs459193 9.98E-01 

FFR - 1/FVC rs6537292 5.82E-01 

 rs12374521 5.89E-01 

 rs56077333 5.11E-06 

 

GWAS analysis for the 13 UKB traits 

To investigate whether the SNPs with effects on variance also have effects on mean, we 

performed GWAS (or genome-wide QTL) analyses for the 13 UKB traits described above. 

We identified 3,973 QTLs at an experiment-wise significance level (i.e., PQTL < 2.0´10-9) for 

the 13 traits in total, a much larger number than that of the vQTLs ( 

 

Table 2-2 and Figure 2-11). Among the 75 vQTLs, the top vQTL SNPs at 9 loci did not pass 

the experiment-wise significance level in the QTL analysis (Table 2-3). For example, the 

CCDC92 locus showed a significant vQTL effect but no significant QTL effect on WC 

(Table 2-3 and Figure 2-12), whereas the FTO locus showed both significant QTL and vQTL 

effects on WC (Figure 2-12). For the 66 vQTLs with both QTL and vQTL effects, the vQTL 

effects were all in the same directions as the QTL effects, meaning that for any of these SNPs 

the genotype group with larger phenotypic mean also tends to have larger phenotypic 
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variance than the other groups. For the 9 loci with vQTL effects only, it is equivalent to a 

scenario where a QTL has a GEI effect with no (or a substantially reduced) effect on average 

across different levels of an environmental factor (Figure 2-1b). 

 

 

Figure 2-11 Manhattan Sunset plot of genome-wide vQTL and QTL analyses 

for waist circumference in the UKB. 

Test statistics (-log10(P values)) of all common SNPs from vQTL (red bars) and 

QTL (blue bars) analysis are plotted against their physical positions. The top 

vQTL SNP is represented by an orange diamond and the name of the nearest 

protein-coding gene is indicated for each significant vQTL locus (PvQTL < 2.0´10-

9). 
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Figure 2-12 QTL and vQTL regional plots at the CCDC92 or FTO locus for 

waist circumference. 

The QTL and vQTL test statistics (i.e., -log10(P values)) for waist circumference 

are plotted against SNP positions surrounding the top vQTL SNP at the CCDC92 

(panel a) or FTO locus (panel b). The top vQTL SNP is represented by a purple 

diamond. SNPs in different levels of LD with the top vQTL SNP are shown in 

different colours. The RefSeq genes in the top panel are extracted from the UCSC 

Genome Browser (URLs). 

 

vQTL and GEI 

To further investigate whether the associations between vQTLs and phenotypic variance can 

be explained by GEI, we performed a direct GEI test based on an additive genetic model with 

an interaction term between a top vQTL SNP and one of five environmental 

factors/covariates in the UKB data (Methods). The five environmental factors/covariates are 

sex, age, physical activity (PA), sedentary behaviour (SB), and ever smoking (Supplementary 

Note 2-5, Figure 2-13 and Table 2-6). We observed 16 vQTLs showing a significant GEI 

effect with at least one of five environmental factors after Bonferroni correction for multiple 

tests (p < 1.33´10-4 = 0.05/(75´5); Figure 2-14a and Table 2-7). 
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Figure 2-13 Phenotypic correlations among PA and SB measures in the 

UKB. 

The Pearson’s correlation coefficient was calculated between each pair of the PA 

and SB measures. The order shown on the plot above was determined by 

hierarchical cluster analysis using the R function hclust(). 

 

Table 2-6 Descriptive summary of the environmental data used in this study 

from the UKB. 

Item Description UDI 

Sex Sex 31-0.0 

Age Year of birth 34-0.0 

TimeD
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DayV
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DayW Number of days/week walked 10+ minutes 864-0.0 

DurW Duration of walks 874-0.0 

DayM 
Number of days/week of moderate physical activity 

10+ minutes 
884-0.0 

DurM Duration of moderate activity 894-0.0 

DayV 
Number of days/week of vigorous physical activity 

10+ minutes 
904-0.0 

DurV Duration of vigorous activity 914-0.0 

TimeD Time spent driving 1090-0.0 

TimeC Time spent using computer 1080-0.0 

TimeTV Time spent watching television (TV) 1070-0.0 

CurS Current tobacco smoking 1239-0.0 

PastS Past tobacco smoking 1249-0.0 

 

 

Figure 2-14 Enrichment of GEI effects among the 75 vQTLs in compared 

with a random set of QTLs. 

Five environmental factors/covariates, i.e., sex, age, physical activity (PA), 

sedentary behaviour (SB), and smoking, were used in the GEI analysis. (a) The 
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heatmap plot of GEI test statistics (-log10(PGEI)) for the 75 top vQTL SNPs. “*” 

denotes significant GEI effects after Bonferroni correction (PGEI < 1.33´10-4 = 

0.05/(75´5)). (b) The distribution of the number of significant GEI effects for 75 

top QTL SNPs randomly selected from all the top QTL SNPs with 1000 repeats 

(mean 2.25 and SD 1.49). The red line represents the number of significant GEI 

effects for the 75 top vQTL SNPs (i.e., 16). 
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Table 2-7 GEI analyses with five environmental factors/covariates in the UKB. 

Trait CHR SNP BP Nearest Gene 
P values of GEI analyses with 

Sex Age PA SB Smoking 

FFR 4 rs6537292 145469968 HHIP 3.13E-02 7.20E-01 5.91E-01 6.39E-01 8.14E-02 
 5 rs12374521 147836880 FBXO38 9.46E-02 1.43E-01 2.63E-01 4.79E-02 2.88E-04 
 15 rs56077333 78899003 CHRNA3 2.36E-02 2.52E-02 9.88E-01 3.02E-04 4.55E-25 

BMD 1 rs1414660 240586695 GREM2 7.60E-01 7.09E-05 1.45E-01 4.26E-01 4.55E-01 
 6 rs9371221 151885986 CCDC170 9.81E-01 7.05E-01 8.33E-01 7.69E-01 1.28E-01 
 6 rs3020332 152008924 ESR1 2.08E-01 4.76E-01 3.28E-01 9.46E-01 9.53E-01 
 7 rs4576334 38153747 STARD3NL 2.85E-01 9.08E-02 1.17E-01 4.58E-01 4.45E-01 
 7 rs10254825 120956440 WNT16 3.06E-04 1.16E-07 4.02E-01 7.83E-01 1.59E-03 

  11 rs603140 86884615 TMEM135 1.07E-03 2.75E-02 5.74E-01 4.58E-02 7.51E-01 

BW 3 rs13322435 156795468 CCNL1 8.46E-02 1.44E-01 6.87E-01 3.69E-01 9.36E-01 

BMI 1 rs545608 177899121 SEC16B 8.59E-03 1.24E-04 6.11E-03 1.27E-02 7.51E-01 
 1 rs6689335 219628682 LYPLAL1 6.65E-01 1.90E-01 3.15E-02 1.13E-01 7.38E-01 
 2 rs62104180 466003 FAM150B 2.75E-01 5.36E-02 2.52E-04 2.07E-01 1.48E-01 
 2 rs6751993 635864 TMEM18 7.08E-01 1.01E-07 1.49E-02 9.67E-01 2.06E-01 
 2 rs10203386 25136866 ADCY3 2.52E-01 4.94E-02 8.81E-03 8.92E-01 4.51E-01 
 2 rs1641155 58965211 FANCL 8.94E-01 4.64E-01 9.82E-01 3.09E-01 3.73E-01 
 3 rs1225053 131642852 CPNE4 1.78E-01 7.44E-01 9.53E-01 8.74E-01 4.52E-01 
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 4 rs10016841 20213781 SLIT2 4.41E-01 8.52E-01 8.64E-03 5.42E-03 3.88E-03 
 4 rs12507026 45181334 GNPDA2 1.59E-01 6.19E-02 6.40E-02 1.46E-01 5.21E-01 
 6 rs34817112 27176628 PRSS16 9.93E-01 1.91E-02 1.52E-01 9.24E-03 9.21E-01 
 6 rs3132947 32176782 GPSM3 2.18E-01 1.92E-03 6.16E-01 1.41E-01 3.66E-01 
 6 rs987237 50803050 TFAP2B 1.24E-01 1.41E-02 4.31E-01 1.68E-01 2.49E-02 
 8 rs17150703 9745798 MSRA 2.62E-01 7.88E-01 3.15E-01 6.25E-02 9.09E-01 
 10 rs4132670 114767771 TCF7L2 3.03E-01 5.72E-01 1.73E-03 6.84E-04 2.36E-01 
 11 rs2049045 27694241 BDNF 1.67E-01 2.66E-01 1.59E-02 9.22E-01 2.62E-01 
 12 rs7132908 50263148 BCDIN3D 2.73E-01 2.94E-01 1.36E-03 2.15E-07 5.88E-04 
 12 rs11057413 124489162 ZNF664-FAM101A 1.02E-01 2.03E-01 6.54E-02 5.81E-03 9.57E-01 
 16 rs4072402 28937259 RABEP2 9.25E-01 1.30E-01 1.82E-02 2.72E-03 3.58E-01 
 16 rs12716979 31011821 STX1B 6.74E-03 9.39E-01 7.48E-03 2.07E-01 5.89E-01 
 16 rs11642015 53802494 FTO 5.01E-03 2.35E-04 1.28E-10 1.64E-09 9.24E-05 
 18 rs10871777 57851763 MC4R 4.63E-01 3.72E-03 3.52E-04 1.41E-02 3.22E-02 

  19 rs2238691 46179043 GIPR 4.83E-01 7.04E-01 5.95E-02 1.74E-04 6.53E-01 

WC 1 rs10913469 177913519 SEC16B 1.63E-01 4.96E-03 2.74E-02 1.31E-01 2.15E-01 
 2 rs62104180 466003 FAM150B 6.08E-02 1.46E-01 1.04E-04 4.77E-01 5.19E-01 
 2 rs13412194 653245 TMEM18 4.87E-01 1.88E-07 3.70E-02 7.16E-01 3.15E-01 
 3 rs7649970 12392272 PPARG 6.35E-01 1.49E-01 8.87E-02 7.91E-01 9.55E-01 
 4 rs12507026 45181334 GNPDA2 2.12E-01 2.10E-02 4.08E-01 6.70E-02 8.13E-01 
 6 rs13198716 26582035 ABT1 1.52E-01 1.50E-04 3.11E-02 2.45E-03 5.51E-01 
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 6 rs1062070 32148031 RNF5 2.30E-01 3.46E-05 2.32E-01 3.13E-01 1.96E-01 
 6 rs4472337 34769765 UHRF1BP1 2.03E-01 6.15E-01 3.14E-02 5.56E-03 4.73E-01 
 6 rs987237 50803050 TFAP2B 2.52E-02 9.32E-03 5.61E-01 2.19E-01 3.32E-02 
 7 rs12667251 130449458 KLF14 2.61E-01 6.30E-01 6.99E-01 3.50E-01 8.05E-01 
 12 rs7133378 124409502 CCDC92 3.59E-03 1.45E-01 7.05E-01 3.62E-03 6.79E-01 
 16 rs8056890 28897452 ATP2A1 8.75E-01 1.52E-01 3.93E-02 4.24E-03 2.10E-01 
 16 rs34898535 31025641 STX1B 5.92E-03 7.08E-01 1.69E-02 2.92E-01 9.87E-01 
 16 rs1421085 53800954 FTO 3.04E-02 2.17E-04 1.44E-07 2.84E-08 1.10E-02 
 18 rs11152213 57852948 MC4R 2.80E-02 1.36E-02 2.21E-03 3.39E-02 2.14E-01 

  19 rs1800437 46181392 GIPR 1.84E-01 4.59E-01 1.62E-01 9.50E-04 1.81E-01 

HC 1 rs6685593 203516075 OPTC 6.22E-01 8.84E-01 3.48E-01 7.42E-02 3.80E-01 
 1 rs2605098 219643649 LYPLAL1 8.00E-03 8.14E-01 5.37E-02 4.52E-01 9.48E-01 
 2 rs62104180 466003 FAM150B 3.95E-01 2.89E-01 2.27E-05 4.70E-02 1.62E-01 
 2 rs6751993 635864 TMEM18 6.50E-01 2.35E-04 1.87E-02 5.09E-01 3.11E-01 
 2 rs10200566 25130462 ADCY3 2.35E-01 1.73E-01 3.57E-02 7.90E-01 7.74E-01 
 6 rs34158769 26336572 BTN3A2 4.31E-01 1.05E-02 1.14E-02 1.60E-02 9.93E-01 
 6 rs3132947 32176782 GPSM3 9.79E-01 4.23E-03 2.53E-01 3.71E-01 7.46E-02 
 6 rs72891717 50858235 TFAP2B 2.32E-01 2.19E-02 5.21E-01 8.67E-01 1.67E-01 
 6 rs141783576 127439897 RSPO3 5.75E-01 5.59E-01 5.95E-02 8.08E-02 6.84E-01 
 7 rs17789506 130445574 KLF14 6.09E-05 4.28E-01 5.89E-02 1.36E-01 2.73E-01 
 12 rs10846580 124415453 CCDC92 6.97E-02 1.10E-01 4.89E-01 1.93E-02 6.48E-01 
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 16 rs8056890 28897452 ATP2A1 7.53E-01 2.66E-01 1.68E-02 2.05E-02 5.89E-01 
 16 rs34898535 31025641 STX1B 1.60E-02 4.20E-01 1.62E-02 1.94E-01 2.77E-01 
 16 rs1421085 53800954 FTO 1.18E-01 2.05E-03 5.32E-07 2.17E-06 1.94E-04 
 18 rs11152213 57852948 MC4R 2.38E-01 2.19E-02 9.80E-04 1.41E-02 6.68E-03 

  19 rs2238691 46179043 GIPR 8.71E-02 9.12E-01 2.66E-01 2.64E-04 2.85E-01 

WHR 5 rs459193 55806751 C5orf67 9.25E-02 4.82E-01 1.92E-01 3.48E-04 6.67E-01 

BFP 1 rs2820468 219673705 LYPLAL1 8.76E-01 1.19E-01 1.60E-02 8.66E-02 2.40E-01 
 2 rs1128249 165528624 GRB14 3.18E-01 2.91E-02 3.55E-01 3.41E-04 5.58E-01 
 3 rs900399 156798732 CCNL1 1.04E-05 2.63E-01 2.15E-01 1.13E-02 1.64E-02 
 6 rs2523625 31315648 HLA-B 2.66E-01 2.87E-01 1.35E-01 6.76E-01 6.38E-01 

  16 rs62033406 53824226 FTO 1.14E-02 2.47E-04 4.43E-03 3.52E-02 1.02E-01 

BMR 6 rs10456362 28221816 ZKSCAN4 8.90E-01 8.38E-03 6.68E-01 1.60E-01 9.13E-01 
 11 rs80083564 27733143 BDNF 4.20E-01 1.69E-02 1.00E-01 5.22E-01 9.89E-01 
 12 rs78719460 133395038 GOLGA3 3.41E-01 8.69E-01 3.04E-01 9.40E-01 6.67E-01 
 16 rs1421085 53800954 FTO 2.07E-01 2.60E-07 1.52E-06 1.45E-07 1.54E-03 

  18 rs476828 57852587 MC4R 1.20E-01 1.22E-03 9.98E-03 6.47E-02 1.62E-02 

Note: p values smaller than 1.33´10-4 are highlighted in pink.
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To test whether the GEI effects are enriched among vQTLs in comparison with the same 

number of QTLs, we performed GEI test for 75 top GWAS SNPs randomly selected from all 

the QTLs and repeated the analysis 1000 times. Of the 75 top SNPs with QTL effects, the 

number of SNPs with significant GEI effects was 2.25 averaged from the 1000 repeated 

samplings with a SD of 1.49 (Figure 2-14b), significantly lower than the number (16) 

observed for the vQTLs (the difference is larger than 9 SDs, equivalent to p = 1.4´10
-20

). 

This result shows that SNPs with vQTL effects are much more enriched with GEI effects 

compared to those with QTL effects. To exclude the possibility that the GEI signals were 

driven by phenotype processing (e.g., the adjustment of phenotype for sex and age), we 

repeated the GEI analyses using raw phenotype data without covariates adjustment; the 

results remain largely unchanged (Figure 2-15).  

 

 

Figure 2-15 Enrichment of GEI effects among the 75 vQTLs in compared 

with a random set of QTLs using the raw phenotypic values. 

Five environmental factors, i.e., sex, age, physical activity (PA), sedentary 

behaviour (SB), and smoking, were used in the GEI analysis. (a) The heatmap 

plot of GEI test statistics (-log10(PGEI)) for the 75 top vQTL SNPs. “*” denotes 
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significant GEI effects after Bonferroni correction (PGEI < 1.33´10
-4

 = 0.05/75/5). 

(b) The distribution of the number of significant GEI effects for 75 top QTL 

SNPs randomly selected from all the top QTL SNPs with 1000 repeats (mean 

3.56 and SD 1.76). The red line represents the number of significant GEI effects 

for the 75 top vQTL SNPs (i.e., 21). 

 

2.4 Discussion 
In this study, we leveraged the genetic effects associated with phenotypic variability to infer 

GEI. We calibrated the most commonly used vQTL methods by simulation. We found that 

the FPR of the Levene’s test was well-calibrated across all simulation scenarios whereas the 

other methods showed an inflated FPR if the phenotype distribution was skewed or heavy-

tailed under the null hypothesis (i.e., no vQTL effect), although the Levene’s test appeared to 

be less powerful than the other methods in particular when the per-variant vQTL effect was 

small (Figure 2-2 and Figure 2-3). Parametric bootstrap or permutation procedures have been 

proposed to reduce the inflation in the test-statistics of DGLM and LRTv, both of which are 

expected to be more powerful than the Levene’s test
133,149

, but bootstrap and permutation are 

computationally inefficient and thus not practically applicable to biobank data such as the 

UKB. We observed inflated FPR for the Levene’s test in the absence of vQTL effects but in 

the presence of QTL effects if the phenotype was non-linearly transformed (e.g., logarithm 

transformation or RINT). We therefore recommend the use of the Levene’s test in practice 

without non-linear transformation of the phenotype. In addition, a very recent study by 

Young et al.
154

 developed an efficient algorithm to perform a DGLM analysis and proposed a 

method (called dispersion effect test (DET)) to remove confounding in vQTL associations 

(identified by DGLM) due to QTL effects. We showed by simulation that when the number 

of simulated causal variants was relatively large (note that the DET test is not applicable to 

oligogenic traits), the Young et al. method (DGLM followed by DET) performed similarly as 

the Levene’s test with differences depending on how the phenotype was processed (Figure 

2-16). 
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Figure 2-16 Comparison of the Young et al. method with the Levene’s test by 

vQTL simulation.  

While we were preparing the manuscript, a very recent study from Young et al.
40

 

developed an efficient algorithm for fitting DGLM (called heteroskedastic linear 

mixed model or HLMM) and proposed a dispersion effect test (DET) to remove 

the impact of the QTL effects on the vQTL signals. We used our multiple-SNP 

simulation setting (Figure 2-3 and Methods) to quantify the FPR and power of the 

Young et al. method (HLMM + DET) in comparison with the Levene’s test based 

on the phenotype after 1) covariate adjustment (“adj”) or 2) covariate adjustment 

followed by rank-based inverse-normal transformation (“rint”). For the Levene’s 

test, the positive rate (FPR or power) was computed as the number of vQTLs with 

p < 0.05 divided by the total number of tests across 1,000 simulations. For the 

analysis with the Young et al. method, the positive rate (FPR or power) was 
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computed as the number of vQTLs with DET p < 0.05 divided by the total 

number of tests across simulations. 

 

We demonstrated in the analysis of the UKB data that a number of vQTLs (with enriched 

GEI effects) can be detected by an appropriate analytical strategy in a very large sample. 

Traits with a larger number of vQTLs detected at the experiment-wise significance level 

tended to have a higher genomic inflation factor (GIF, defined as the mean or median chi-

squared statistic divided by its expected value) even after excluding the top vQTLs as well as 

SNPs in LD with them (Figure 2-17), consistent with a polygenic model of variance 

effect
61,155

, suggesting a large number of vQTLs with small variance effects yet to be 

discovered in larger samples in the future. 

 



 49 

 



 50 

 

Figure 2-17 Quantile-Quantile plots of vQTL associations for the 13 UKB 

traits.  

For each trait, we shown the QQ plots for all SNPs including (red) or excluding 

(blue) the top vQTLs and SNPs in LD with them (determined by GCTA-LDF
53

). 

The area highlighted in grey is the 95% confidence interval. 

 

There are several vQTLs for which the GEI effect has been reported in previous studies. The 

first example is the interaction effect of the CHRNA5-A3-B4 locus (rs56077333) with 

smoking for lung function (as measured by FFR ratio, i.e., FEV1/FVC), PvQTL = 1.1´10
-14

 

and PGEI(smoking) = 4.6´10
-25

 (Table 2-8). The CHRNA5-A3-B4 gene cluster is known to be 

associated with smoking and nicotine dependence
156-158

. However, results from recent GWAS 
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studies
159-161

 do not support the association of this locus with lung function. We hypothesize 

that the effect of the CHRNA5-A3-B4 locus on lung function depends on smoking
162

 (Table 

2-8). The vQTL signal at this locus remained (PvQTL = 5.2´10
-12

) after adjusting the 

phenotype for array effect, which was reported to affect the QTL association signal at this 

locus
46

. The second example is the interaction of the WNT16-CPED1 locus with age for 

BMD (rs10254825: PvQTL = 2.0´10
-45

 and PGEI(age) = 1.2´10
-7

). The WNT16-CPED1 locus is 

one of the strongest BMD-associated loci identified from GWAS
163,164

. We observed a 

genotype-by-age interaction effect at this locus for BMD ( 

Table 2-9), in line with the results from previous studies that the effect of the top SNP at 

WNT16-CPED1 on BMD in humans
165

 and the knock-out effect of Wnt16 on bone mass in 

mice
166

 are age-dependent. The third example is the interaction of the FTO locus with 

physical activity and sedentary behaviour for obesity-related traits (PvQTL < 1´10
-10

 for BMI, 

WC, HC, BFP and BMR; PGEI(PA) = 1.3´10
-10

 for BMI, 1.4´10
-7

 for WC, 5.3´10
-7

 for HC and 

2.6´10
-7

 for BMR). The FTO locus was one of the first loci identified by the GWAS of 

obesity-related traits
167

 although subsequent studies
168,169

 show that IRX3 and IRX5 (rather 

than FTO) are the functional genes responsible for the GWAS association. The top associated 

SNP at the FTO locus is not associated with physical activity but its effect on BMI decreases 

with the increase of physical activity level
88,170

, consistent with the interaction effects of the 

FTO locus with physical activity or sedentary behaviour for obesity-related traits identified in 

this study ( 

Table 2-10 and  

Table 2-11). In addition, 5 of the 22 BMI vQTLs were in LD (r2 > 0.5) with the variants 

(identified by a recently developed multiple-environment GEI test) showing significant 

interaction effects at FDR < 5% (corresponding to p < 1.16´10
-3

) with at least one of 64 

environmental factors for BMI in the UKB
171

. 

 

It should be noted that GEI is sufficient but not necessary to generate a vQTL. For the vQTLs 

that did not show a direct GEI effect in our GEI analysis, we cannot distinguish whether they 

are due to undetected GEI or direct effects on phenotypic dispersion although GEI is a more 

likely explanation because of the enrichment of GEI (Figure 2-14), hence these traits and loci 

are candidates for follow-up studies to identify putative environmental risk factors that may 

be amendable to lifestyle modification. 
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Table 2-8 GEI effect between the CHRNA5-A3-B4 locus and smoking on FFR 

Phenotype Top vQTL SNP 

Effect size (Standard error) P values 

never smokers (n= 

188,860) 

ever smokers (n= 

160,488) 
vQTL analysis QTL analysis GEI test 

FFR rs56077333 0.0105 (0.0035) -0.0453 (0.0042) 1.09E-14 2.11E-06 4.55E-25 

 

Table 2-9 GEI effect between the WNT16-CPED1 locus and age on BMD 

Phenotype 
Top vQTL 

SNP 

Effect size (Standard error) P values 

Age group 1:  

40-49 years  

(n = 59,734) 

Age group 2:  

50-59 years 

(n = 108,736) 

Age group 3: 

60-69 years 

(n = 156,173) 

Age group 4: 

70-74 years  

(n = 23,250) 

vQTL 

analysis 

QTL 

analysis 
GEI test 

BMD rs10254825 0.1448 (0.0081) 0.1650 (0.0059) 0.1907 (0.0050) 0.1765 (0.0119) 2.01E-45 0 1.16E-07 

 

Table 2-10 Associations of FTO locus with obesity-related traits stratified by physical activity (PA) levels 

Phenotype 
Top vQTL 

SNP 

Effect size (Standard error) P values 

Low PA group  

(n = 103,374) 

Intermediate PA group  

(n = 145,889) 

High PA group  

(n = 97,506) 

vQTL 

analysis 

QTL 

analysis 
GEI test 

BMI rs11642015 0.1018 (0.0049) 0.0715 (0.0037) 0.0609 (0.0041) 1.73E-73 7.43E-217 1.28E-10 

WC rs1421085 0.0858 (0.0048) 0.0652 (0.0037) 0.0524 (0.0042) 3.27E-52 3.21E-166 1.44E-07 

HC rs1421085 0.0825 (0.0049) 0.0623 (0.0037) 0.0505 (0.0042) 1.65E-48 2.05E-152 5.32E-07 
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BMR rs1421085 0.0842 (0.0049) 0.0608 (0.0037) 0.0531 (0.0043) 8.95E-47 9.23E-154 1.52E-06 

 

Table 2-11 Associations of FTO locus with obesity-related traits stratified by sedentary behaviour (SB) levels 

Phenotype 
Top vQTL 

SNP 

Effect size (Standard error) P values 

SB group 1:  

0-5 hours  

(n = 244,215) 

SB group 2:  

6-11 hours  

(n = 89,712) 

SB group 3:  

12-17 hours  

(n = 5,445) 

vQTL 

analysis 

QTL 

analysis 
GEI test 

BMI rs11642015 0.0694 (0.0027) 0.1001 (0.0052) 0.1085 (0.0234) 1.73E-73 7.43E-217 1.64E-09 

WC rs1421085 0.0593 (0.0028) 0.0879 (0.0050) 0.1089 (0.0223) 3.27E-52 3.21E-166 2.84E-08 

HC rs1421085 0.0577 (0.0028) 0.0815 (0.0052) 0.1199 (0.0230) 1.65E-48 2.05E-152 2.17E-06 

BMR rs1421085 0.0576 (0.0028) 0.0849 (0.0052) 0.1024 (0.0233) 8.95E-47 9.23E-154 1.45E-07 
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In conclusion, we systematically quantified the FPR and power for four commonly used 

vQTL methods by extensive simulations and demonstrated the robustness of the Levene’s 

test. We also showed that in the presence of QTL effects the Levene’s test statistic could be 

inflated if the phenotype was non-linearly transformed. We implemented the Levene’s test as 

part of the OSCA software package172 (URLs) for efficient genome-wide vQTL analysis. We 

applied OSCA-vQTL to 13 quantitative traits in the UKB and identified 75 vQTL (at 41 near-

independent loci) associated with 9 traits, 9 of which did not show a significant QTL effect. 

As a proof-of-principle, we performed GEI analyses in the UKB with 5 environmental 

factors/covariates and demonstrated the enrichment of GEI effects among the detected 

vQTLs. Hence, the vQTL trait-loci combinations we have identified, could be investigated 

for as-yet-undetermined but measurable environmental risk factors generating GEI, as these 

factors could be amenable to lifestyle change interventions. However, the conclusions from 

this study may be only applicable to quantitative traits of polygenic architecture. We caution 

vQTL analysis for binary or categorical traits, or molecular traits (e.g., gene expression or 

DNA methylation), for which the methods need further investigation. 

 

2.5 Methods 
Simulation study 

We used a DGLM94,146,147 to simulate the phenotype based on two models with simulated 

SNP data in a sample of 10,000 individuals, i.e., a single-SNP model and multiple-SNP 

model with two covariates (i.e. age and sex). The single-SNP model can be written as 

! = #$! + & with '()(+"#) = #-! + '()(+
#
) 

and the multiple-SNP model can be expressed as 

! = ∑ /$
%
$&' $(! + ∑ #)

*
)&' $!" + & with '()(+"#) = ∑ /$

%
$&' -(! +∑ #)

*
)&' -!" + '()(+

#
), 

where ! is a simulated phenotype; # or #) is a standardized SNP genotype, i.e., # = (0 −

23)/523(1 − 3) with 0 being the genotype indicator variable coded as 0, 1 or 2, generated 

from  binomial(2, f) and f being the MAF generated from uniform(0.01, 0.5); cj is a 

standardized covariate with c1 (sex) generated from binomial(1, 0.5) and c2 (age) generated 

from uniform(20, 60); e is an error term with mean 0 and variance +"#. To simulate the error 

term with different levels of skewness and kurtosis, we generated & from five different 

distributions, including normal distribution, t-distribution with degree of freedom (df) = 10 or 

3 and 7# distribution with df = 15 or 1. $ (-) is the effect on mean (variance) generated from 

N(0,1) if exists, 0 otherwise. '()(+#) is the intercept of the second linear model which was 
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set to 0. We re-scaled the different components to control the variance explained, i.e., 0.1 and 

0.9 for the genotype component and error term, respectively, in the single-SNP model, and 

0.2, 0.4 and 0.4 for the covariate component, genotype component and error term, 

respectively, in the multiple-SNP model. We simulated the SNP effects in four different 

scenarios: 1) effect on neither mean nor variance (nei), 2) effect on mean only (mean), 3) 

effect on variance only (var), or 4) effect on both mean and variance (both). We simulated 

only one causal SNP in the single-SNP model and 4, 40 or 80 causal SNPs in the multiple-

SNP model. 

 

We performed vQTL analyses using the simulated phenotype and SNP data to compare four 

vQTL methods, including the Bartlett’s test142, the Levene’s test144, the Fligner-Killeen test145 

and the DGLM (Supplementary Note 2-2). We also performed the Levene’s test with six 

phenotype process strategies, including raw phenotype (raw), raw phenotype adjusted for 

covariates (adj), RNIT after adj (rint) (Supplementary Note 2-3), logarithm transformation 

after adj (log), square transformation after adj (sq), and cube transformation after adj (cub). 

We repeated the simulation 1,000 times and calculated the FPR and power at p < 0.05 at a 

single SNP level. 

 

The UK Biobank data 

The full release of the UKB data comprised of genotype and phenotype data for ~500,000 

participates across the UK46. The genotype data were cleaned and imputed to the Haplotype 

Reference Consortium (HRC)39 and UK10K173 reference panels by the UKB team. Genotype 

probabilities from imputation were converted to hard-call genotypes using PLINK2174 (--

hard-call 0.1). We excluded genetic variants with MAF < 0.05, Hardy-Weinberg equilibrium 

test p value < 1´10-5, missing genotype rate > 0.05 or imputation INFO score < 0.3 and 

retained 5,554,549 variants for further analysis. 

 

We identified a subset of individuals of European ancestry (n = 456,422) by projecting the 

UKB PCs onto those of 1000 Genome Project (1KGP)175. We then removed one of each pair 

of individuals with SNP-derived (based on HapMap 3 SNPs) genomic relatedness > 0.05 

using GCTA-GRM53 and retained 348,501 unrelated European individuals for further 

analysis. 
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We selected 13 quantitative traits for our analysis (Table 2-1 and Figure 2-4). We adjusted 

the raw phenotype values for age and the first 10 PCs, excluded from the analysis phenotype 

values that were more than 5 SD from the mean, and then standardized to z-scores with mean 

0 and variance 1 in each gender group. 

 

Genome-wide vQTL analysis 

The genome-wide vQTL analysis was conducted using the Levene’s test implemented in the 

software tool OSCA172 (URLs). The Levene’s test used in the study (also known as the 

median-based Levene’s test or the Brown-Forsythe test144) is a modified version of the 

original Levene’s test143 developed in 1960 that is essentially an one-way ANOVA test of the 

variable 8+$ = |!+$ − !,:|, where !+$ is phenotype of the j-th individual in the i-th group and !,:  

is the median of the i-th group. The Levene’s test statistic 

(; − <)

(< − 1)

∑ ;+
)
+&' (8+. − 8..)

#

∑ ∑ (
.#
$&'

)
+&' 8+$ − 8+.)

#
 

approximately follows a F distribution with < − 1 and ; − < degrees of freedom under the 

null hypothesis, where n is the total sample size, k is the number of groups (< = 3 in vQTL 

analysis), ;+ is the sample size of the i-th group, i.e. ; = ∑ ;+
)
+&' , 8+$ = |!+$ − !,:|, 8+. =

'

.#
∑ 8+$
.#
$&' , and 8.. =

'

/
∑ ∑ 8+$

.#
$&'

)
+&' . 

 

The experiment-wise significance level was set to 2.0´10-9, which is the genome-wide 

significance level (i.e., 1´10-8)150,151 divided by the effective number of independent traits 

(i.e. 5.00 for our 13 traits). The effective number of independent traits was estimated based 

on the phenotypic correlation matrix176 (Supplementary Note 2-4). To determine the number 

of near-independent vQTLs, we performed an LD clumping analysis for each trait using 

PLINK2174 (--clump option with parameters --clump-p1 2.0e-9 --clump-p2 2.0e-9 --clump-r2 

0.01 and --clump-kb 5000). To visualize the results, we generated the Manhattan and regional 

association plots using the ggplot2 package in R. 

 

GWAS analysis 

The GWAS (or genome-wide QTL) analysis was conducted using PLINK2174 (--assoc 

option) using the same data as used in the vQTL analysis (note that the phenotype had been 

pre-adjusted for covariates and PCs). The other analyses, including LD clumping, and 

visualization, were performed using the same pipelines as those for genome-wide vQTL 
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analysis described above. 

 

GEI analysis 

Five environmental factors/covariates (i.e., sex, age, PA, SB and smoking) were used for the 

direct GEI tests. Sex was coded as 0 or 1 for female or male. Age was an integer number 

ranging from 40 to 74. PA was assessed by a three-level categorical score (i.e., low, 

intermediate and high) based on the short form of the International Physical Activity 

Questionnaire (IPAQ) guideline177. SB was an integer number defined as the combined time 

(hours) spent driving, non-work-related computer using or TV watching. The smoking factor 

“ever smoked” was coded as 0 or 1 for never or ever smoker. More details about the 

definition and derivation of environmental factor PA, SB and smoking can be found in the 

Supplementary Note 2-5, Figure 2-13 and Table 2-6. 

 

We performed a GEI analysis to test the interaction effect between the top vQTL SNP and 

one of the five environmental factors based on the following model 

! = > + $!0! + $000 + $!00!00 + &, 

where y is phenotype, > is the mean term, 0! is mean-centred SNP genotype indicator, and 

00 is mean-centred environmental factor. We used a standard ANOVA analysis to test for 

$!0 and applied a stringent Bonferroni-corrected threshold 1.33´10-4 (i.e., 0.05/(75´5)) to 

claim a significant GEI effect. 

 

2.6 URLs 
OSCA, http://cnsgenomics.com/software/osca 
PLINK2, http://www.cog-genomics.org/plink2	
GCTA, http://cnsgenomics.com/software/gcta 
UCSC Genome Browser, https://genome.ucsc.edu/	
SMR, http://cnsgenomics.com/software/smr 
The UKB data, http://www.ukbiobank.ac.uk/ 
vQTL summary statistics for the 13 UKB traits, 
http://cnsgenomics.com/software/osca/#DataResource 
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2.8 Supplementary Notes 
Supplementary Note 2-1 The theoretical derivation of vQTL as a consequence of GEI 

It has been shown by Pare et al.131 that the interaction of a genetic variant with a genetic or 

environmental factor for a trait (e.g., GEI) can lead to differences in variance of the trait 

across genotype classes of the variant. Take GEI as an example. Under a GEI model, a 

phenotype y is affected by a genetic variant xg, an environmental factor xE, and an interaction 

term xgxE,, i.e., 

! = > + $!0! + $000 + $!00!00 + & 

where > is the intercept term, $!, $0 , $!0 are the effects of xg, xE and xgxE, respectively, and e 

is the residual. The phenotypic variance conditional on the genotype of the variant is 

@ABC!D0!E = @AB(> + $!0! + $000 + $!00!00 + &) 

= @AB(($0 + $!00!)00 + > + $!0! + &) 

= ($0 + $!00!)
#
@AB(00) + @AB(&) 

, assuming that xg, xE and e are independent of each other. This equation shows that the 

phenotypic variance given a genotype is dependent on the genotype in the presence of GEI 

(i.e., $!0 ≠ 0). 
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Supplementary Note 2-2 The Bartlett’s test, the Fligner-Killeen test, and the double 

generalized linear model (DGLM) test 

We evaluated four variance quantitative trait locus (vQTL) methods by simulation. Details of 

the Levene’s test have been described in the Methods section of the main text, and details of 

the other three methods are described below. 

 

The Bartlett’s test142 is one of the earliest methods used to test the inequality of variance but 

known to be sensitive to the violation of normality assumption141. The Bartlett’s test-statistic 

is 

(; − <)';(H1
#
) − ∑ (

)
+&' ;+ − 1)';(H+

#
)

1 +
1

3(< − 1)
(∑ (

)
+&'

1

;+ − 1
) −

1

; − <
)

∼ 7)2'
#  

where n is the total sample size; k is the number of groups; ;+ is the sample size of the i-th 

group, ; = ∑ ;+
)
+&' ; H+# is the sample variance in the i-th group; H1# is the pooled estimate of 

the variance, H1# =
'

.2)
∑ (
)
+&' ;+ − 1)H+

#. We used the bartlett.test() function in R for data 

analysis. 

 

The Fligner-Killeen (median) test145 is a rank-based method with similar performance to the 

Levene’s test. The Fligner-Killeen test-statistic is 

∑ ;+
)
+&' (J+ − A)

#

@#
∼ 7)2'

#  

where n is the total sample size; k is the number of groups; ;+ is the sample size of the i-th 

group, ; = ∑ ;+
)
+&' ; a is the “rank score” assigned by K2'

(
'3

!
$%&
#
) with j being the rank of all 

observations based on D!+$ − !+: D, !+:  being the median of the i-th group and K2' being the 

standard normal quantile function; J+ is the mean rank score of the i-th group; A is the mean 

rank score of all observations; @# is the sample variance of rank scores of all observations. 

We used the fligner.test() function in R for data analysis. 

 

Ronnegard et al.94,146 proposed a double generalized linear model (DGLM)147 that contained 

two linear predictors, one for the effect on the trait mean and the other for the effect on the 

trait variance: 

L(!|M, M4) = >; 	> = PQ + RM 

SAB(!|M, M4) = -; 	'()(-) = P4Q4 + R4M4 
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where y is the phenotype; u and ud are the random effects on the mean and variance 

(dispersion), respectively; b and bd are the fixed effects on the mean and variance 

(dispersion), respectively. We used “dglm” package in R for data analysis. 

 

Supplementary Note 2-3 Rank-based inverse-normal transformation 

We used the simulated data to compare several phenotype processing strategies. Rank-based 

inverse-normal transformation (RINT) was conducted based on the formula below178,179 

!+
5
= K

2'
T

B+ − /

; − 2/ + 1
U 

where B+ is the ordinary rank of the i-th observation; n is the total number of observations; c is 

a constant value (set to 0.5 in this study); K2' is the standard normal quantile function; !+5 is 

the transformed value for the i-th observation. For RINT after covariate adjustment, we first 

adjusted the phenotypes for covariates and then transformed the residuals by RINT. 

 

Supplementary Note 2-4 The effective number of independent traits 

As some phenotypes were correlated with each other (Figure 2-4), we used an 

eigendecomposition analysis to estimate the effective number of independent traits176. Let y 

be a vector of p phenotypes and V be the variance-covariance matrix of vector y. The eigen 

decomposition of matrix V is 

V = Q’ΛQ 

where Q is the matrix of eigenvectors and Λ is the diagonal matrix comprised of the ordered 

eigenvalues λ1 … λp. The effective number of p phenotypes can be estimated as176: 

(∑ V)
1
)&' )

#

∑ V)
#1

)&'

 

 

Supplementary Note 2-5 Definitions of the three environmental factors - PA, SB and 

smoking 

Physical activity (PA) was assessed based on the questions from International Physical 

Activity Questionnaire (IPAQ)180, including the number of days per week of walking 

(DayW), the number of days per week of moderate physical activity (DayW), the number of 

days per week of vigorous physical activity more than 10 minutes (DayV), the duration of 

walking (DurW), the duration of moderate physical activity (DurM), and the duration of 

vigorous physical activity (DurV) (Table 2-6). According to the IPAQ analysis guideline177, 

the metabolic equivalents (MET) minutes for walking (METW), moderate physical activity 
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(METM), vigorous physical activity (METV), and the total MET (METT) minutes were 

calculated by  

METW = 3.3 ´ DayW ´ DurW 

METM = 4.0 ´ DayM ´ DurM 

METV = 8.0 ´ DayV ´ DurV 

METT = METW + METM + METV 

The physical activity level was then labelled as 1) “high” (coded as 3) when “DayV³3 and 

METT³1500” or “DayW+DayM+DayV³7 and METT³3000”; 2) “moderate” (coded as 2) 

when “DayV³3 and DurV³20” or “DayM³5 and DurM³30” or “DayW³5 and DurW³30” or 

“DayW+DayM+DayV³5 and METT³600”; 3) “low” (coded as 1) when no activity or some 

activity was reported but not enough to meet the criteria above. 

 

Sedentary behaviour (SB) was defined as the sum of the time spent driving (TimeD), non-

work-related computer using (TimeC) or TV watching (TimeTV) (Table 2-6). We removed 

outliers 5 SD from the mean; the remaining data ranged from 0 to 17 hours. 

 

Smoking was assessed based on the answers to two questions about current tobacco smoking 

(CurS) and past tobacco smoking (PastS) (Table 2-6). Individuals were classified as “never 

smoker” (coded as 0) if CurS = “no” and PastS = “tried once or twice” or “never”. 

Individuals were classified as “ever smoker” (coded as 1) if CurS = “most days” or 

“occasionally”, or PastS = “most days” or “occasionally”. 
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3 
Chapter 3: Inflation in test-statistics for genotype-by-

environment and genotype-by-genotype interactions due to 
linkage disequilibrium 

 

 

 

 

 

 

 

 

 

 

Part of this chapter has been published in Science Advances in 2019 and part has been 

incorporated in a manuscript under review. 
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Inflation in test-statistics for genotype-by-environment and genotype-by-genotype 

interactions due to linkage disequilibrium 

 

3.1 Abstract 
Most genetic analyses of human complex traits mainly focus on additive genetic effects, 

partially because of the complexity of statistical modeling for non-additive effects. Linkage 

disequilibrium (LD) is known to be able to create phantom signals for genotype-by-

environment interaction (GEI) or genotype-by-genotype interaction (i.e., epistasis) test. Here, 

we performed theoretical derivations to quantify inflation due to LD in test-statistics for 

vQTL analysis, which can be used to infer GEIs. We examined the vQTLs identified in UKB 

in Chapter 2 based on our derivation and found no evidence for them to be phantom vQTLs. 

For epistasis test, we used simulations based on whole genome sequence (WGS) data from 

the UK10K project to quantify the inflation for different genotyping strategies. We found the 

level of inflation was related to genotyping strategies and increased almost linearly with the 

increase of the variance explained by the additive causal variant. Our study quantifies the 

inflation due to LD in test-statistics for vQTL and epistasis test under a range of scenarios 

and provides an important caveat for the analysis of interaction effects using genotyped or 

imputed variants in traits for which there is a large additive genetic effect. 

 

3.2 Introduction 
Linkage disequilibrium (LD), the correlation between alleles at different loci, is a double-

edged sword for the genetic study of human complex traits. On one side, LD enables the 

utility of observed genetic marker variants (usually SNPs) as proxies to tag unobserved 

causal variants in the association study for human complex traits181. On the other side, 

however, it is difficult to distinguish causal variants from highly correlated marker variants 

due to LD (the so-called fine-mapping problem182). In addition, LD can also be a source of 

phantom association for studies to detect interaction effects, such as GEI and epistasis. 

 

The vQTL approach can be used to search genetic variants involving GEIs without measuring 

environmental factors, which has been demonstrated in Chapter 2. LD can produce phantom 

vQTL signals in presence of a causal variant with only an additive effect, which has been 

demonstrated by a simulation study and observed in real vQTL analysis on DNA 

methylation133,134. In other words, if the underlying causal QTL is not well imputed or not 
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well tagged by a genotyped/imputed variant, the untagged variation at the causal QTL will 

inflate the vQTL test-statistic, potentially leading to a spurious vQTL association. 

 

The phantom signal created by LD can also be seen for the epistasis test. In 2014, Hemani et 

al.183 performed an exhaustive epistasis test on every pair of 528,509 genotyped SNPs for 

7,339 gene expressions in a discovery sample of 864 individuals, identified and replicated a 

few SNP pairs with significant interaction effects. Following this publication, however, 

Wood et al.184 found that the significance of interaction effects identified in Hemani et al. 

could be removed by including a third genetic variant detected using WGS dataset more 

strongly associated with the gene expression, which demonstrated that the epistasis test 

involving an imperfect tagged genetic variant can be inflated by a causal variant with an 

additive effect185. 

 

The explicit statistical mechanisms of phantom vQTL and phantom epistasis mentioned 

above are still elusive. For phantom vQTL, the quantitative relationship between LD and 

phantom vQTL signals and to what extent it will affect the vQTL analysis are largely 

unknown. For phantom epistasis, Wood et al.184 explained that the inflation was raised by two 

genetic variants in a moderate level of linkage disequilibrium (LD), corresponding to the cis-

cis interactions. Furthermore, de los Campos et al.185 also claimed that the inflation for 

epistasis test required two genetic marker variants and the causal additive variant mutually in 

LD. However, neither Wood et al. nor de los Campos et al. could explain the cis-trans 

interactions, which accounted for the majority (462/501) of the SNP pairs with significant 

epistatic effect discovered in Hemani et al.183. 

 

Here we used theoretical derivation and simulation study to quantify the inflation level of 

phantom vQTL and phantom epistasis. This work partially explains why interaction effects 

are harder to study than additive genetic effects and raises caution when performing 

association scanning for interaction effects. 

 

3.3 Results 
Model overview 

Let us consider two genetic variants: causal variant A and marker variant B. The LD between 

variant A and B can be measured by a few parameters, including D, D’, and r2, based on their 
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allele frequency and haplotype frequency186 (Supplementary Note 3-1). Suppose the causal 

variant A has an additive genetic effect (bc) on phenotype y: 

! = > + Q(06 + & 

, where > is the intercept, 06 is the genotype value of variant A (coded as 0, 1, 2), and & is the 

residual term assumed with a mean 0 and variance +#. The causal variant A is usually not 

observed in practice, so the marker variant B can be used to tag the causal variant A. And the 

test-statistic for additive genetic association (or GWAS) at marker variant B is a function of 

sample size, the phenotypic variance explained by variant A, and the LD r2 between variant 

A and B187,188 (Supplementary Note 3-2, Supplementary Note 3-3, and Supplementary Note 

3-4). 

 

Phantom vQTL 

It is less acknowledged that the marker variant B not only can tag the additive genetic effect 

of causal variant A, but also has a variance heterogeneity. We derived the expected genetic 

effect on phenotypic mean (Q*) and phenotypic variance ($*) at marker variant B 

(Supplementary Note 3-3) based on genotype frequencies and conditional genotype 

frequencies of these two variants (Supplementary Note 3-2): 

Q* =
Q((W78 − W7W8)

W8(1 − X8)
 

$* =
Q(
#
[(1 − 2W8)W78

#
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#
]

W8
#
(1 − W8)

#  

. This variance heterogeneity could be detected by vQTL test. We derived that the Levene’s 

test-statistic due to the phantom vQTL effect was a function of sample size n, variance 

explained by the causal variant [(#, allele frequency of the causal variant W7, allele frequency 

of the marker variant W8, and the haplotype frequency pAB (Supplementary Note 3-5): 

\9:;:<: =
;

] − 2
(1 −

[5+#*W8
#
+5+#* + $*2W8(1 − W8) + 5+

#
* + 2$*(1 − W8)

#
]
#

+#* + 2(1 − W8)$*
) 

, where +#* = +
#
+

#='((1)21*))1*)
1)
( . This formula was confirmed by simulation shown in 

Figure 3-1. Our theory was consistent with the observation of pervasive phantom vQTLs for 

molecular traits with large-effect QTLs (e.g., DNA methylation134). 
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Figure 3-1 Verification of the expected Levene’s test F-statistic due to 

phantom vQTL effect by simulation. 

We simulated two variants A (pA = 0.7) and B (PB = 0.6) in LD (PAB = 0.6, LD r2 

= 0.64, and LD D’ = 1) from multinomial(2, (PAB, PAb, PaB, Pab)) and a 

phenotype based on the causal variant A explaining 5% variance in 350,000 

individuals. Shown is the distribution of F-statistics from the Levene’s test using 

the simulated data with 1,000 replicates. The red line indicates the theoretical 

value. 

 

To investigate whether there were phantom vQTLs for the vQTLs identified in Chapter 2 

using UKB dataset, we then computed \9:;:<: given a number of parameters including W78  

(equivalent to D’ ranging from -1 to 1), W6 (ranging from 0.001 to 0.5, equivalent to pA from 

0.999 to 0.5), W= (ranging from 0.05 to 0.5, equivalent to pB from 0.95 to 0.5), [(# (= 0.005, 

0.01 or 0.02) and n (= 350,000) (Figure 3-2). The result showed that for a causal QTL with q2 

< 0.005 and MAF > 0.05, the largest possible phantom vQTL F-statistic was smaller than 

2.69 (corresponding to a p-value of 6.8´10-2; Figure 3-2). This explains why there were 

thousands of genome-wide significant QTLs but no significant vQTL for height ( 

 

Table 2-2 and Figure 2-6). This result also suggests that the vQTLs detected in Chapter 2 are 

very unlikely to be phantom vQTLs because the estimated variance explained by their QTL 

effects were all smaller than 0.005 except for rs10254825 at the WNT16 locus on BMD (q2 = 

0.014) (Figure 3-3). However, our numerical calculation also indicated that for a QTL with 

MAF > 0.3 and q2 < 0.02, the largest possible phantom vQTL F-statistic was smaller than 

5.64 (corresponding to a p-value of 3.6´10-3), suggesting rs10254825 is also unlikely to be a 
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phantom vQTL. Note that we used the variance explained estimated at the top GWAS SNP to 

approximate q2 of the causal QTL so that q2 was likely to be underestimated because of 

imperfect tagging. However, considering the extremely high imputation accuracy for 

common variants39, the strong LD between the causal QTLs and the GWAS top SNPs 

observed in a previous simulation study based on whole-genome-sequence data150, and the 

overestimation of variance explained by the GWAS top SNPs because of winner’s curse, the 

underestimation in causal QTL q2 is likely to be small. In addition, we re-ran the vQTL 

analysis with the phenotype adjusted for the top GWAS variants within 10Mb of the top 

vQTL SNP; the vQTL signals after this adjustment were highly concordant with those 

without adjustment (Figure 3-4).  
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Figure 3-2 Expected phantom vQTL F-statistics from Levene’s test. 
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We calculated the expected phantom vQTL F-statistics given a number of 

parameters including W78  (equivalent to LD D’ from -1 to 1), W6 (ranging from 

0.001 to 0.5), W= (ranging from 0.05 to 0.5), [(# (= 0.005, 0.01 or 0.02) and n (= 

350,000). An F value of 18.4 is equivalent to a genome-wide significant p-value 

of 1´10-8. 

 

 
Figure 3-3 Estimated variance explained by top QTL SNPs for the 13 UKB 

traits. 

Note that because the phantom vQTL signals at common SNPs can be induced by 

rare (MAF≤0.01) or low-frequency (0.01≤MAF<0.05) variants, we extended our 

GWAS analysis to all 44,741,800 imputed variants (MAF<0.05). The estimated 

variance explained by each GWAS top SNP is plotted against its MAF. 
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Figure 3-4 vQTL test statistics (-log10(PvQTL)) from analyses with and without 

adjusting the phenotype for the QTL effect(s) of the top GWAS SNP(s) 

within 10Mb of the top vQTL SNP.  

The red line represents the line with slope 1 and intercept 0. 

 

We further showed that there was no evidence for epistatic interactions, which could be 

another source for vQTL signals, between the top vQTL SNPs and any other SNP located 

more than 10 Mb away or on a different chromosome (Figure 3-5). Note that we did not 

perform epistatic test for SNP pairs within 10 Mb to avoid phantom epistatic signals by 

LD184. 

 

 
Figure 3-5 Manhattan plot of epistasis analysis for one of top vQTL SNPs. 
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We conducted epistasis analysis between each of 75 top vQTL SNPs and any 

other SNPs in more than 10 Mb distance or on a different chromosome for the 

relevant trait using PLINK2174 (--epistasis option). The blue horizontal line 

represents the genome-wide significance level (i.e., p-value = 1´10-8). Shown are 

the results from the epistasis analysis with the top vQTL SNP rs10913469 for 

waist circumference (WC). 

 

Phantom epistasis 

LD-induced phantom signals can also be seen for epistasis tests. Let us consider the marker 

variant B (0=), which is in LD with causal variant A (06), is included in an epistasis test with 

variant C (0(). One simple test for epistasis between variant B and C is to include a product 

term in a multiple linear regression model: 

! = > + Q'0= + Q#0( + Q@0=0( + & 

, and then the test statistics for epistasis is the t-test or partial F-test for the term 0=0(. We 

explored the situation where variant B and variant C were in no LD, which was not well 

studied previously184,185. 

 

We performed simulation study using WGS data from UK10K. Firstly a quantitative 

phenotype was simulated based on one causal variant on chromosome 21 with only the 

additive genetic effect (Methods section). Secondly, we conducted association study across 

genetic variants on chromosome 21 captured using four different genotyping strategies (i.e. 

WGS variants (WGS), array-based genotyped variants (array), and imputed variants based on 

reference panel HapMap project (Hapmap) or 1000 genome project (1KG3)) (Methods). 

Finally, we performed the epistasis test between the top variant on chromosome 21 (cis 

variant) and each of common (MAF≥0.01) array-based genetic variants on chromosome 22 

(trans variants) and evaluated the inflation using genomic inflation factor. The means of 

genomic inflation factor for the interaction term across 540 replicates were calculated and 

shown in Figure 3-6. 

 

We found that the test statistics were not inflated for WGS genotype data but inflated for 

array or imputed genotype data. The level of inflation for array-variants was higher than that 

for imputed-variants. This was consistent with the level of imperfect tagging qualified using 

LD B# between top variant and causal variant (Figure 3-7). And also, the level of inflation 
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increased with the increase of variance explained by the additive effect of the causal variant 

(Figure 3-6). We explored four additional models (Methods) aiming to correct the epistasis 

test inflation. However, none of them can correct the inflation, and the model 3 even deflated 

the test-statistics (Figure 3-8), suggesting that the scale of 0= or 0( would not affect the test-

statistic of the interaction term 0=0(. 

 

 
Figure 3-6 The inflation of test-statistics for epistasis test for simulated 

phenotype with different variance explained using four different genotyping 

strategies.  

The phenotype was simulated based on one causal variant on chromosome 21 

with variance explained ranging from 0.02 to 0.8. The epistasis test was 

conducted between the top variant on chromosome 21 identified using four 

different genotyping strategies and all common (MAF³0.01) array-based genetic 

variants on chromosome 22. The means of genomic inflation factors of test 

statistics for interaction term across 540 replicates were reported on y-axis. 
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Figure 3-7 The LD ^A between the causal variant and top variant identified 

using four different genotyping strategies with different variance explained. 

The means of LD B# across 540 replicates were reported on y-axis. 

 

 
Figure 3-8 The inflation of test-statistics for epistasis test using four 

additional models. 
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The means of genomic inflation factor V across 540 replicates were reported on y-

axis. See Methods section for the details about the four additional models for 

epistasis tests. 

 

3.4 Discussion 
In this chapter, we quantified the inflation in test-statistics for phantom vQTL and phantom 

epistasis. We used theoretical derivation to calculate the expected value of test-statistics for 

median-based Levene’s test, which was the method we chose to conduct vQTL analysis in 

Chapter 2. We found vQTLs we identified in chapter 2 in UKB cannot be explained by 

phantom vQTLs. We further pre-fitted the top QTL and found consistent test-statistics before 

and after fitting. We did not find any evidence for these vQTLs being explained by epistasis. 

 

For phantom epistasis, we performed a simulation study to demonstrate the inflation of 

epistasis test between two genetic variants not in LD, which was corresponding to the cis-

trans interactions observed in Hemani et al.183 but not explained in either Wood et al.184 or de 

Los Campos et al.185. We further quantified the level of epistasis inflation and found it was a 

function of variance explained by the causal variant and LD between the tagging variant and 

causal variant. We had not found any solutions for correcting this inflation except the causal 

variants were captured by the genotype data (like WGS data in our simulation). The reason 

for discrepancies between our study and de los Campos et al. paper185 needs further 

investigation. 

 

The phantom signals are caused by the imperfect tagging between the causal and marker 

variants. With more WGS data available, supposed to capture almost all genetic variants, the 

LD between causal and marker variants would diminish, which is likely to greatly solve the 

problem of phantom signals. Without WGS, it is a suboptimal way to detect the phantom 

signals by pre-fitting the largest QTL and looking at the test-statistics before and after fitting, 

although a consistency of test-statistics could not completely exclude the possibility of 

phantom signals, as the largest QTL observed is not necessarily the causal variant or the 

marker variant perfectly tagging the causal variant. Our analysis showed that the phantom 

signals for both vQTL and epistasis analysis are positively related to the variance explained 

by the additive QTL. So, this problem is more likely to occur for the traits with big effect 

variants, such as gene expression or DNA methylation. Therefore, we did not observe in our 
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vQTL analysis for 13 traits in UKB with a sample size as large as ~350,000. The heritability 

analysis to estimate the overall variance explained by epistatic effect71 for complex traits 

seems unlikely to be affected either. But with a larger sample, the phantom signal may 

become more concerning, as it also increases with the sample size. 

 

3.5 Methods 
Genotype in simulation study for phantom epistasis 

The genotype data was generated based on WGS data from UK10K project173 using four 

different strategies, which has been described previously56,150: 1) the WGS data from UK10K 

project containing about 17.6 million variants for 3,642 unrelated European individuals after 

quality control (WGS); 2) the subset of WGS variants captured by the array of Illumina 

CoreExome (array); 3) and 4) the imputed variants based on array-variants using the software 

IMPUTE2189 with phase 2 of HapMap project190 (Hapmap) or phase 3 of 1000 Genomes 

Project191 (1KG3) as the reference panel. In this simulation study, we only used the genetic 

variants on chromosomes 21 and 22. The number of common (MAF≥0.01) variants and all 

variants for different genotypes can be found in Table 3-1. 

 

Table 3-1 The number of variants on chromosomes 21 and 22 for genotype 

data generated using different strategies. 

Strategy Chromosome 

Chromosome 21 Chromosome 22 

Common 

variants 

All 

variants 

Common 

variants 

All 

variants 

Hapmap 21 31872 32942 30578 32399 

Array 21 3813 4415 3886 4842 

UK10K 21 116907 241712 114272 233568 

1KG3 21 128546 273274 130050 289916 

 

Simulated Phenotype 

We used the method described before150 to simulate the phenotype, which was based on one 

causal variant randomly chosen from WGS variants: 

! = #M + & 

, where # was B2#C

D#C('2C)
 with 0 being the genotype value (coded as 0, 1, 2) and 3 being the 
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allele frequency, and & was the error term generated from a normal distribution 

_(0, SAB(#M) T
'

E(
− 1U) with [# being the variance explained by the genetic value ranging 

from 0.02 to 0.8. The previous study150 replicated the simulation with 50,000 common and 

50,000 rare causal variants chosen across the whole genome. We only retained the replicates 

with 719 common (MAF≥0.01) variants on chromosome 21 in this study. 

 

Association study 

The association analysis was performed on all genetic variants on chromosome 21 using the 

software PLINK2174 (option “--assoc”). We selected the one with the largest `# value as the 

top variant for different strategies, as there could be more than one variant with p-values 

equal to 0 when the simulated variance explained was large. 

 

Epistasis test 

The epistasis test was the multiple linear regression model with a cross-product/interaction 

term to model the additive-by-additive epistatic effect: 

! = > + Q'0= + Q#0( + Q@0=0( + & 

, where 0F is genotype value (coded by 0, 1, 2) of the top variant in association analysis on 

chromosome 21, and 0G is genotype value for each of the 3,886 common array-based variants 

on chromosome 22. The test for the interaction term (t-test or partial F-test) was performed 

using function lm() in R language. 

 

To correct the inflation, we investigated four additional models trying to remove the 

correlation between 0= or 0( with the interaction term 0=0( by centralizing 0= and/or 0(, or 

two-step fitting. For example, a(S(0= , 0=0() = @AB(0=)L(0(), so a(S(0= , 0=0(() = 0.  

 

More specifically, model 1 included one genotype value (0() centralized (0(() 

!~0= + 0(
(
+ 0=0(

( 

, and model 2 included two genotype values (0= and 0() centralized (0=( and 0(() 

!~0=
(
+ 0(

(
+ 0=

(
0(
( 

; in model 3, we fitted 0= and 0( first and then took the residual (!H) to be regressed on the 

interaction term 0=0( 

!
H
~0=0(; 	!

H
= B&cde(!~0= + 0() 

, and in model 4, we first regressed 0=0( on 0= and 0( and then took the residual (0=(H) to be 
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fitted with 0= and 0( on ! 

!~0= + 0( + 0=(′; 	0=(
H
= B&cde(0=0(~0= + 0() 

 

We quantified the inflation level using the genomic inflation factor V = g&edA;(7
#
)/0.455 

for interaction term. In practice, we excluded the simulation replicates with no solution for 

epistasis test due to collinearity, in two situations where 0=0( were all 0s, or 0=0( were all 

the same as 0= or 0(, and eventually 540 replicates were analyzed. 

 

3.6 Supplementary Notes 
Supplementary Note 3-1 LD between two variants 

Allele and haplotype frequencies 

Variant A 

Variant B 

Major allele B Minor allele b Allele frequency 

Major allele A W78 W7= = W7 − W78 W7 

Minor allele a W68 = W8 − W78 W6= = 1 − W7 − W8 + W78 W6 = 1 − W7 

Allele frequency W8 W= = 1 − W8 1 
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The haplotype frequency pAB and LD between variant A and B as a function of pA and pB 

Measures Definition Maximum value Minimum value 

!!" - "#$[!!, !"] !! + !" − 1 

D + = !!" − !! × !" "#$[!!(1 − !"), !"(1 − !!)] −(1 − !!)(1 − !") 

D' 

+# =
+

min[!!(1 − !"), !"(1 − !!)]
, if	D	 > 	0 

+′ =
+

"#$[!!!" , (1 − !!)(1 − !")]
, if	D	 < 	0 

1 -1 

:$ :$ =
+$

!!!"(1 − !!)(1 − !")
 "#$[

!!(1 − !")
(1 − !!)!"

,
(1 − !!)!"
!!(1 − !")

] 0 

 

Supplementary Note 3-2 Genotype frequencies of the two variants 

Genotype frequencies of the two variants 

 Genotype BB Genotype Bb Genotype bb 
Genotype 

Frequency 

Genotype AA !!!"" = !!"$  
!!!"% = 2!!"!!% 

= 2!!"(!! − !!") 
!!!%% = !!%$ = (!! − !!")$ !!$ 

Genotype Aa 
!!&"" = 2!!"!&" 

= 2!!"(!" − !!") 

!!&"% = 2(!!"!&% + !!%!&") 

= 2[!!"(1 − !! − !" + !!") 

+(!! − !!")(!" − !!")] 

!!&%% = 2!!%!&% 

= 2(!! − !!")(1 − !! − !"
+ !!") 

2!!(1 − !!) 

Genotype aa !&&"" = !&"$  !&&"% = 2!&"!&% !&&%% = !&%$  (1 − !!)$ 
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= (!" − !!")$ = 2(!" − !!")(1 − !! − !" + !!") = (1 − !! − !" + !!")$ 

Genotype 

Frequency 
!"$  2!"(1 − !") (1 − !")$ 1 

 

Genotype frequency of variant A conditioning on variant B 

Genotype AA Aa aa 

BB 

<(== ∣ ?? ) =
!!!""
!""

 

=
!!"$

!"$
 

<(=@ ∣ ?? ) =
!!&""
!""

 

=
2!!"(!" − !!")

!"$
 

<( @@ ∣ ?? ) =
!&&""
!""

 

=
(!" − !!")$

!"$
 

Bb 

<(== ∣ ?A ) =
!!!"%
!"%

 

=
!!"(!! − !!")
!"(1 − !")

 

<(=@ ∣ ?A ) =
!!&"%
!"%

 

=
!!"(1 − !! − !" + !!") + (!! − !!")(!" − !!")

!"(1 − !")
 

<( @@ ∣ ?A ) =
!&&"%
!"%

 

=
(!" − !!")(1 − !! − !" + !!")

!"(1 − !")
 

bb 

<(== ∣ AA ) =
!!!%%
!%%

 

=
(!! − !!")$

(1 − !")$
 

<(=@ ∣ AA ) =
!!&%%
!%%

 

=
2(!! − !!")(1 − !! − !" + !!")

(1 − !")$
 

<( @@ ∣ AA ) =
!&&%%
!%%

 

=
(1 − !! − !" + !!")$

(1 − !")$
 

 

Supplementary Note 3-3 The expected phenotypic mean and variance for variant A and B 

The expected phenotypic mean and variance for variant A (causal) can be found in the table below. 

Genotype Code (xa) E(y|xa) Var(y|xa) B(C$|E&) 
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AA 0 F G$ G$ + F$ 

Aa 1 F + A' G$ G$ + (F + A')$ 

aa 2 F + 2A' G$ G$ + (F + 2A')$ 

 

The expected phenotypic mean and variance given a genotype of variant B (marker) can be found in the table below. 

Genotype Code (xb) E(y|xb) 

BB 0 
F +

2A'(!" − !!")
!"

 

Bb 1 
F +

A'(2!" − !!" − 2!"$ + 2!"!!" − !!!")
!"(1 − !")

 

= F +
A'[(!" − !!")(1 − !") + (1 − !! − !" + !!")!"]

!"(1 − !")
 

bb 2 
F +

2A'(1 − !! − !" + !!")
1 − !"

 

 

Var(y|xb) 

G$ +
2A'

$(!" − !!")!!"
!"$

 

G$ +
A'

$(!"!!" − !!"$ + 2!"!!"$ − 3!"$!!" + !!!"$ − 2!"$!!"$ + 2!!!"$!!" + 2!"(!!" − !!!"( − !!$!"$)
!"$(1 − !")$

 

= G$ +
A'

$[(!" − !!")!!"(1 − !")$ + (1 − !! − !" + !!")(!! − !!")!"$]
!"$(1 − !")$
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G$ +
2A'

$(1 − !! − !" + !!")(!! − !!")
(1 − !")$

 

 

We therefore can observe an additive effect on both mean (A)) and variance (I)) at the marker (variant B): 

C ∼ (F) + A)E% , G$) + I)E%) 

where 

F) = F +
2A'(!" − !!")

!"
 

A) =
A'(!!" − !!!")
!"(1 − <")

 

G$) = G$ +
2A'

$(!" − !!")!!"
!"$

 

I) =
A'$[(1 − 2!")!!"$ + (2!!!" + !" − 1)!"!!" + (1 − !! − !")!!!"$]

!"$(1 − !")$
 

 

Supplementary Note 3-4 QTL test-statistics at the marker variant B 

Assuming phenotypic variance of 1 (i.e., var(y) = 1), the variance explained by the marker variant (K)$ ) and the non-centrality parameter (NCP) 

of a chi-squared test for QTL effect at the marker can be written as 

K)$ = 2!"(1 − !")A)$ = 2!"(1 − !")
A'$(!!" − !!!")$

!"$(1 − !")$
= 2!!(1 − !!)A'$

(!!" − !!!")$

!!(1 − !!)!"(1 − !")
= K'$:$ 

NCP =
$K)$

1 − K)$
=

$K'$:$

1 − K'$:$
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where n is the sample size, K'$ is the variance explained by the causal variant, and :$ is the LD between the causal and the marker variants. This 

derivation is consistent with that in previous studies187,188. 

 

Supplementary Note 3-5 The vQTL test statistic at the marker variant B 

Under normality assumption, the distribution of the phenotype with respect to the marker variant can be written as: 

C ∼ O(F) + A)E% , G$) + I)E%) 

 

We then have  

C − B(C|E%) ∼ O(0, G$) + I)E%) 

 

, and P = |C − CQ | 

P = |C − CQ | = |C − B(C|E%)| ∼ 	Folded	Normal	Distribution(]
2
^ (G

$) + I)E%), (1 −
2
^)(G

$) + I)E%)) 

 

Genotype Code (E%) E(z|xb) var(z|xb) B(P$|E%) 

BB 0 ]2
^ G

$) (1 −
2
^)G

$) G$) 

Bb 1 ]2
^ (G

$) + I)) (1 −
2
^)(G

$) + I)) G$) + I) 
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bb 2 ]2
^ (G

$) + 2I)) (1 −
2
^)(G

$) + 2I)) G$) + 2I) 

 

B(P) = B(P|E% = 0)<(E% = 0) + B(P|E% = 1)<(E% = 1) + B(P|E% = 2)<(E% = 2) 

= ]2
^ G

$)!"$ + ]
2
^ (G

$) + I))2!"(1 − !") + ]
2
^ (G

$) + 2I))(1 − !")$ 

 

B(P$) = B(P$|E% = 0)<(E% = 0) + B(P$|E% = 1)<(E% = 1) + B(P$|E% = 2)<(E% = 2) 

= G$)!"$ + (G$) + I))2!"(1 − !") + (G$) + 2I))(1 − !")$ 

= G$) + 2(1 − !")I) 

 

_@:(P) = B(P$) − [B(P)]$ = G$) + 2(1 − !")I) − [B(P)]$ 

 

The Levene’s test is essentially one-way ANOVA test on the variable z (see the Methods section). We therefore have 

 

B(``a) = B[∑ ∑ (*!
+,-

.
/,- P/+ − P..)$] = c@:(P)$ = (G$) + 2(1 − !")I) − [B(P)]$)$; 

 

B(``B) = B dee(
*!

+,-

.

/,-
P/+ − P/.)$f 
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= (1 −
2
^)G

$)$!"$ + (1 −
2
^)(G

$) + I))$2!"(1 − !") + (1 −
2
^)(G

$) + 2I))(1 − !")$ 

= (1 − $
1)(G

$) + 2(1 − !")I))$; 

 

B(``g) = B(``a − ``B) = [$1 (G
$) + 2(1 − !")I)) − [B(P)]$]$; 

 

h234353 =
($ − 3)B(``g)
(3 − 1)B(``B) ≈

$
2
B(``g)
B(``B) =

$
2

2
^ (G

$) + 2(1 − !")I)) − [B(P)]$

(1 − 2
^)(G

$) + 2(1 − !")I))
 

=	
$

^ − 2 (1 −
[jG$)!"$ +jG$) + I)2!"(1 − !") + jG$) + 2I)(1 − !")$]$

G$) + 2(1 − !")I)
) 

where h234353 is the Levene’s F-statistic; SST, SSR and SSR are the total sum of squares, regression sum of squares and error sum of squares, 

respectively, as defined in an ANOVA analysis. 

 

Given that var(y) = 1, we can replace A'$ with 
6"#

$7$(-97$)
, and G$ with 1 − K'$: 

I) =
K'$[(1 − 2!")!!"$ + (2!!!" + !" − 1)!"!!" + (1 − !! − !")!!!"$]

2!!(1 − !!)!"$(1 − !")$
 

G$) = 1 − K'$ +
(!" − !!")!!"
!!(1 − !!)!"$

K'$ 

h234353 = *
19$ (1 −

[<=#%7&#><=#%>?%$7&(-97&)><=#%>$?%(-97&)#]#
=#%>$(-97&)?%

) 
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Chapter 4: Integrating genetic and environmental 

information to improve phenotype prediction for body mass 
index 
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Integrating genetic and environmental information to improve phenotype prediction for 

body mass index 

 

4.1 Abstract 

Predicting human complex traits or diseases can be achieved by using genetic information 

(genetic risk score, GRS) or environmental information (environmental risk score, ERS). 

However, it has been less studied to integrate both genetic and environmental information 

(genetic and environmental risk score, GERS). Here we took body mass index (BMI) as a 

model trait, generated the GRS based on 1,317,930 HapMap3 SNPs, generated ERS based on 

eight environmental factors, and explored different methods to construct the GERS using 

348,501 unrelated European individuals of UK Biobank (UKB). We found GERS could 

improve the prediction accuracy in comparison with GRS only, with GERS based on a 

multiple linear regression (MLR) performing best (i.e. R2 increased from 13.1% for GRS to 

18.1% for GERS_mlr). In addition, integrating GRS with the genetic components of 

environmental factors (multiple GRS, MGRS) could not improve the prediction accuracy if 

all GRSs were based on the same training dataset using both real data and simulation study. 

Our results indicate the value of integrating both genetic and environmental information for 

predicting BMI and other complex traits or diseases. 

 

4.2 Introduction 

The prediction of human complex traits or diseases is key for personalized prevention, 

intervention, and treatment126,192-195. One notable example is Framingham risk score/pooled 

cohort equation for cardiovascular disease (CVD)196,197. The latest American College of 

Cardiology/American Heart Association (ACC/AHA) recommends lipid-lowering treatment 

for individuals with risk > 7.5% in primary care198. Most risk scores/models are based on 

multiple risk factors/predictors, which could be demographic factors (e.g., age or sex), 

environmental factors (e.g. biomarkers or smoking), or genetic factors (e.g. family history or 

monogenic mutations). The current risk models, including CVD risk model, are usually 

imprecise estimates, so there are continuous efforts to search for new factors to be included 

and to improve the accuracy of risk prediction199,200. 

 

Recently, polygenic/genetic risk score (PRS/GRS) is promising, which accumulates the 

effects of many genetic variants across the whole genome. The prediction accuracy of GRS 
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has achieved comparable prediction performance with other risk factors112,115,124,125 and is 

approaching its theoretical maximum114,201,202 due to the increasing sample size of GWAS 

study43,46 and the development of more sophisticated statistical tools2,113,118. The genetic 

information, in contrast with environmental information, is determined at birth, so it is free of 

reverse causality and less vulnerable for confounding (except for confounders such as 

relatedness and population stratification203 which can be well-controlled31). GRS is also cost-

effective, because one genotype array of < 100 dollars can be used to predict many traits and 

diseases. 

 

Early studies have tried to combine GRS with established risk models or risk factors204  (e.g. 

CVD205-208, breast cancer205,209-212, and others212),  while the added values of GRS are still 

under debate. For example, Mars et al.205 and Mosley et al.206 found non-significant 

improvement (assessed by net reclassification improvement (NCI)) of GRS adding to clinical 

risk scores using FINRISK, ARIC, and MESA cohorts to predict CVD, Elliott et al.207 found 

significant but modest improvement using UKB data, and Riveros-Mckay et al.208 found the 

significant and highest improvement using UKB data. In addition, more broad environmental 

factors (sometimes called exposomic factors)213,214 are being examined for their potential to 

be included in the risk prediction model. 

 

Here, we took BMI as a model trait and built GRS based on genome-wide genetic variants, 

ERS based on eight environmental factors, and GERS by combining GRS and ERS in 

different ways in the UKB. We evaluated whether and to what extent GERS could improve 

the prediction accuracy. 

 

4.3 Results 

Method overview 

For an individual with ! genetic variants ("!…"") and $ environmental factors (%!…%#), a 

simple form of GRS is the weighted sum of the genotype values: 

"&' = )!"! +)$"$ +⋯+)""" 

, and then a GERS can be calculated by 

"%&' = ,%"&' + ,!%! + ,$%$ +⋯+ ,#%# 

, where weights )!…	)# are generated by SBayesR method2 in this study, and weights 

,%…	,# are generated by different methods under investigation: 1) ,% = 1 and ,!…	,# 
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using phenotypic correlation (/&) (GERS_rp); 2) ,%…	,# estimated by a MLR (GERS_mlr); 

3) )% = 1 and )!…	)# using causal effect sizes of environmental factors on the phenotype 

inferred by a mendelian randomization analysis (GERS_mr) (Methods). 

 

We used BMI as our target phenotype, 1,317,930 HapMap3 SNPs genotype data, and eight 

environmental factors (i.e. coffee intake (Coffee), educational attainment (EA), nap during 

day (Nap), salt added to food (Salt), SB, sleep duration (Sleep), smoking status (Smoking), 

and tea intake(Tea)) measured in 348,501 unrelated European individuals in UKB (Table 4-1 

and Figure 4-1). We used SBayesR2 method to construct the GRS and GSMR215 method in 

the mendelian randomization analysis. We tried different strategies to split the UKB dataset 

into training, validation and testing datasets: 1) randomly (rrr); 2) young, old, and old 

individuals (yoo); 3) young, young, and old individuals (yyo); 4) first, first, and second BMI 

measurements accessible individuals (ffs). 

 

Table 4-1 Phenotype and eight environmental factors in UKB 

Name Description 
Sample 

size 
Data field(s) Unit or coding rule 

BMI Body mass index (BMI) 346,989 21001 kg/m2 

Coffee Coffee intake 347,124 1498 cups/day 

EAa Education attainment 344,890 6138 EduYears 

Nap Nap during day 348,057 1190 
never/rarely (1); sometimes 

(2); usually (3) 

Salt Salt added to food 348,199 1478 
never/rarely (1); sometimes 

(2); usually (3); always (4) 

SBb Sedentary behaviour 339,330 
1090, 1080, 

1070 
hours/day 

Sleep Sleep duration 346,161 1160 hours/day 

Smokingc Smoking status 346,407 1239, 1249 never (0); ever (1) 

Tea Tea intake 346,428 1488 cups/day 
a based on the rules in Lee et al. 2018 paper44 (Table S17). 
b and c details of the definition can be found in Wang et al. 2019 paper1 (Note 

S5). Briefly, SB is the total time for driving, computer using and TV watching, 
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and smoking is the status of smoking (never or ever). 

 

 
Figure 4-1 Phenotypic correlation (rp), genetic correlation (rg), and causal 

effect size (bxy) for BMI and eight environmental factors.  

a) The phenotypic correlation between each pair of BMI and eight environmental 

factors were calculated in the training dataset of “rrr” strategy. b) The phenotypic 

correlation with BMI, genetic correlation estimated by LDSR61 method with 

BMI, and causal effect size inferred by GSMR215 method on BMI for eight 

environmental factors in the training dataset of “rrr” strategy were plotted with 

point estimates as diamonds and standard error (SE) multiplied by 1.96 as lines 

(only rg and bxy). 

 

GRS and GERSs 

We found all GERSs built by three different methods performed better than the GRS across 

all four data splitting strategies (Figure 4-2). Among three GERSs, the GERS_mlr, which 

accounted both the correlation between GRS and environmental factors and the correlation 

within different environmental factors, performed best, and improved the prediction accuracy 

of GRS from 0.131 to 0.181 (38.2%), 0.117 to 0.169 (44.4%), 0.119 to 0.168 (41.2%), and 

0.116 to 0.171 (47.4%), in “rrr”, “yoo”, “yyo”, and “ffs” data splitting strategy, respectively. 

And the GERS_mr performed worst, even for the second BMI measurements (“ffs” strategy). 

For different data splitting strategies, the prediction accuracies of GRS and GERSs using the 
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randomly splitting strategy (“rrr” strategy) were better than those using other strategies, 

which was consistent with previous study216. 

 

 
Figure 4-2 Prediction accuracy of GRS and GERSs with eight environmental 

factors in different data splitting strategies. 

The prediction accuracy was evaluated using R2 in the testing dataset for GRS 

and GERS_rp, GERS_mlr, and GERS_mr with eight environmental factors in 

different data splitting strategies (i.e., rrr, yoo, yyo, and ffs). See more details in 

Methods section. 

 

We also assessed the performance of GERSs with each one of these eight environmental 

factors. We found that the prediction accuracy of GERS with SB was highest, followed by 

Nap and GERS with coffee, sleep and tea almost could not improve prediction accuracy 

(Figure 4-3). 
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Figure 4-3 Prediction accuracy of GRS and GERSs with each one of eight 

environmental factors in different data splitting strategies. 

The prediction accuracy was evaluated using R2 in the testing dataset for GRS 

and GERS_rp, GERS_mlr, and GERS_mr with each of eight environmental 

factors in different data splitting strategies (i.e., rrr, yoo, yyo, and ffs). See more 

details in Methods section. 

 

MGRS 

Instead of requiring environmental information measured for GERS, there are other studies 

utilizing only the genetic component of environmental information, including multi-trait 

prediction217-219, multiple polygenic risk scores (MPS)220, and metaGRS125, which we called 

MGRS here. We constructed a MGRS using a MLR (MGRS_mlr): 

0"&'"'( = 1%GRS + 1!"&')! +⋯+ 1#"&')# 

. We found that the MGRS combining the GRSs of BMI and eight environmental factors 

cannot improve the prediction accuracy in comparison with BMI GRS only (Figure 4-4). We 

explained below by simulation study it was because all GRSs were based on the same 

training dataset. 
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Figure 4-4 Prediction accuracy of GRS of BMI and MGRS of BMI and eight 

environmental factors in comparison with GRS in different data splitting 

strategies. 

 

We simulated two quantitative traits (trait 1 and 2) with varying parameters: variance 

explained by the genetic component for trait 1 (ℎ!), variance explained by the genetic 

component for trait 2 (ℎ$), the training sample size for trait 1 (6!), the training sample size 

for trait 2 (6$), and the genetic correlation between trait 1 and trait 2 (/*). We found that if 

trait 1 and trait 2 were based on one same dataset with sample size 500 (one500), 5,000 

(one5k), and 50,000 (one50k), the prediction accuracy of MGRS_mlr was similar to that of 

GRS (the first 3 rows in Figure 4-5). However, if trait 1 and trait 2 were based on two 

different datasets with sample size 500 for trait 1 and sample size 500 (500+500), 5,000 

(500+5k) and 50,000 (500+50k) for trait 2, the prediction accuracy of MGRS_mlr was 

improved in comparison to GRS and the level of improvement increased with the decrease of 

ℎ! and 6!, and the increase of ℎ$, 6$ and /*, which was consistent with the previous study217. 
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Figure 4-5 Simulation study evaluating the prediction accuracy for trait 1 of 

MGRS in comparison to GRS.  

The following parameters were used with different values, including ℎ!$ with 0.2, 

0.5, 0.8, ℎ$$ with 0.2, 0.5, 0.8, and /* with 0, 0.25, 0.5, 0.75, 1, in one training 

dataset (i.e., one500, one5k, one50k) or two training datasets (i.e., 500+500, 

500+5k, 500+50k) with different sample sizes. Each combination was replicated 

100 times and prediction accuracies were presented in violin plots above. The 

black dash line represents the variance explained by the genetic component for 

trait 1 (ℎ!$). 

 

4.4 Discussion 

We explored different methods to combine the genetic and environmental factors to improve 

the prediction accuracy for human complex traits. We took BMI as our model trait and built 

GRS, ERS, and GERS using different methods in UKB dataset. We found an improvement 

for GERS in comparison with GRS and the multiple linear regression method shown the 

highest improvement. We also performed real data and simulation study to demonstrate that 

an MGRS combined with different GRS based on the same dataset could not improve the 

prediction accuracy. 
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We tested three ways to construct the GERS. The GERS_rp and GERS_mlr were based on 

the simple and multiple linear regression, respectively, which were simple and classic 

textbook linear regression models. We also included a GERS_mr based on the MR method, 

as we hypothesized the causal effects estimated by MR are more robust to confounding and 

reverse causality effects than the regression coefficients estimated by linear regression 

models, so that might provide higher prediction accuracy. However, we observed a lower 

prediction accuracy for GERS based on MR than GERS based on linear regression models. It 

could be because the confounding and reverse causality effects also existed in the test dataset, 

leading to inflated prediction accuracy for MLR, although we tried different data splitting 

strategies. Another reason could be the immature methodology of MR to accurately estimate 

the causal effect size of environmental factors on the trait and the potential non-linearity of 

the causal effect. 

 

There are a few limitations in this study. Firstly, we only included eight environmental 

factors to explore the potential of GERS, which were clearly not comprehensive, and more 

lifestyle factors (e.g. diet) could affect BMI. Secondly, we only considered additive effects 

and did not consider interaction effects. The genotype-by-genotype interaction was expected 

to be small, but the influence of environmental-by-environmental interaction and genotype-

by-environmental interaction needs further study. Finally, more methods to build GERS (e.g. 

multivariate MR methods) and MGRS (e.g. MTAG218 or SMTpred217) need to be tested. 

 

4.5 Methods 

UKB and data splitting 

UKB is a large-scale data resource consisting of genotype and phenotype information for 

around 500,000 individuals aged 40-70 years old in United Kingdom46. We used the 

genotype of 1,317,930 HapMap 3 SNPs, BMI as our target phenotype, and eight 

environmental factors (Table 4-1) for 348,501 unrelated European individuals in UKB. We 

excluded the outlier values 5 standard deviation from the mean for BMI and each of eight 

environmental factors. More details about per-individual and per-SNP quality control can be 

found in Chapter 2. 

 

The UKB dataset was then split into training, validation, and testing datasets based on 

different strategies (Table 4-2): 1) “rrr”: 328,501, 10,000 and 10,000 individuals were 
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randomly sampled as training, testing and validation datasets, respectively. 2) “yoo”: the 

youngest 327,893 individuals were selected as training dataset. For the remaining 20,000 

individuals, we randomly sampled 10,000 individuals as validation dataset and 10,000 

individuals as testing dataset. 3) “yyo”: the youngest 337,893 individuals were randomly split 

to two datasets (327,893 individuals as training dataset and 10,000 individuals as testing 

dataset). The remaining 10,000 individuals were classified as testing dataset. 608 individuals 

without age information available were excluded in strategy “yoo” and “yyo”. 4) “ffs”: the 

333,311 individuals with only first/initial BMI measurement available were randomly split to 

two datasets (323,311 individuals as training dataset and 10,000 individuals as validation 

dataset). The remaining 15190 individuals with second BMI measurement available were 

classified as testing dataset. 

 

Table 4-2 The sample size of training, validation and testing dataset in 

different data splitting strategies. 

Data splitting 

strategy 
Training (n) Validation (n) Testing (n) 

rrr Random (328501) Random (10000) Random (10000) 

yoo Young (327893) Old (10000) Old (10000) 

yyo Young (327893) Young (10000) Old (10000) 

ffs First BMI (323311) First BMI (10000) 
Second BMI 

(15190) 

 

GRS and GERSs 

The GWAS analysis was conducted using PLINK2174 (--assoc option) in the training dataset 

for BMI and eight environmental factors, whose values were pre-adjusted with age, sex, PC 

1-10, inverse-normal transformed (BMI only), and standardized to z scores with mean zero 

and variance 1. The marginal effect sizes were re-estimated to joint effect sizes using a 

summary data-based Bayesian multiple regression method SBayesR2 implemented in 

software GCTB (version 2), with parameters “--sbayes R --maf 0.01 --chain-length 21000 --

burn-in 1000 --estimate-ps”, and a sparse LD matrix reference (a subset of LD correlation 

values set to zero) generated using a randomly sampled 50,000 individuals in UKB. Then the 

GRS was generated using PLINK2 (“--score” option) in validation and testing dataset. 
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We explored different methods to combine GRS and eight environmental factors (%!…%+) to 

construct the GERS. Firstly, we use the phenotypic correlations (/&(!)…/&(+)) between BMI 

and environmental factors estimated in the training dataset as weights (GERS_rp): 

"%&'(& = "&' +8/&(.)

+

./!
%. 

. Secondly, we use the weights (,%…,+) estimated by MLR between GRS and 

environmental factors in the validation dataset (GERS_mlr): 

"%&'"'( = ,%"&' +8,.

+

./!
%. 

. Thirdly, we use the causal effect sizes (901(!)…901(+)) of environmental factors on BMI 

inferred by a Mendelian randomization analysis (GSMR method) (GERS_mr): 

"%&'"( = "&' +8901(.)

+

./!
%. 

. We used the GSMR method implemented in GCTA53 with GWAS summary data of 

environmental factors generated in the training dataset, GWAS summary data of BMI from 

the GIANT consortium43, and LD reference based on randomly selected 10,000 individuals in 

the UKB (GSMR parameters: --gsmr2-beta --heidi-thresh 0.01 0.01 and --gsmr-snp-min 10). 

The values of BMI and eight environmental factors were also standardized into z score with 

mean 0 and variance 1 in the validation and testing dataset separately. The prediction 

accuracy was estimated using R2 in the testing dataset. 

 

MGRS methods 

We constructed a MGRS to combine GRSs of BMI and eight environmental factors using the 

GWAS summary data calculated in the training dataset with weights estimated by a MLR in 

the validation dataset: 

0"&'"'( = 1%GRS + 1!"&')! +⋯+ 1#"&')# 

. For the simulation study, we simulated two traits (trait 1 and trait 2), 

:! =8β!(.)

"

.
)(.) + <!; :$ =8β$(.)

"

.
)(.) + <$ 

, where :! and :$ are trait 1 and trait 2; )(.) is the standardized genotype value for i-th out of 

m (=1000) SNPs, i.e., )(.) = (?(.) − 2B(.))/D2B(.)(1 − B(.)), with ?(.) being the genotype 

indicator variable coded as 0, 1, or 2 generated from binomial(2,B(.)), and B(.) being the minor 
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allele frequency (MAF) generated from uniform(0.1,0.5); β! and β$ are effect sizes of i-th 

SNP on trait 1 and trait 2 generated from a binormal distribution E(0,

⎣
⎢
⎢
⎢
⎡ 2!"

"
(#32!"2""

"
(#32!"2""

"
2""
" ⎦

⎥
⎥
⎥
⎤

), 

with ℎ!$ being the variance explained for trait 1, ℎ$$ being the variance explained for trait 2, 

and /* being the genetic correlation between trait 1 and trait 2; <! and <$ are the 

environmental terms for trait 1 and trait 2, generated by a binormal distribution 

E(0, N
1 − ℎ!

$ 0
0 1 − ℎ$

$O). We varied the following parameters: ℎ!$ = 0.2, 0.5, 0.8; ℎ$$ = 

0.2,0.5, 0.8; /* = 0, 0.25, 0.5, 0.75, 1. We simulated one training dataset with sample size 500 

(one500), 5,000 (one5k), 50,000 (one50k), or two independent training datasets with sample 

size 500 for trait 1 and sample size 500 (500+500), 5000 (500+5k), 50000 (500+50k) for trait 

2, and 5000 individuals for validation dataset, and 5000 individuals for testing dataset. Each 

situation was replicated for 100 times. 

 

4.6 URLs 

PLINK2, http://www.cog-genomics.org/plink2 

GCTB-SBayesR, https://cnsgenomics.com/software/gctb/#Overview 

GCTA-GSMR, https://cnsgenomics.com/software/gcta/#GSMR 

The UKB data, http://www.ukbiobank.ac.uk/ 

GIANT BMI summary data, 

https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_file

s  
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5 
Chapter 5: Summary and discussion 
  



 99 

The overall aim of this thesis is to better understand the genetic and environmental effects on 

human complex traits. Based on Fisher’s quantitative genetics model more than 100 years 

ago, the phenotypic value or the phenotypic variance can be partitioned into genetic and 

environmental components, and also the potential GEI component, where the genetic 

component can be further partitioned into additive, dominance, and epistatic genetic effects. 

Three research projects have been conducted to study the GEI component (Chapter 2), 

inflation in test-statistics for GEI and epistasis (Chapter 3), and phenotype prediction using 

both genetic and environmental factors (Chapter 4). The main findings of these three research 

chapters will be summarized in this chapter and future directions of human complex traits 

study will be discussed. 

 

5.1 GEI effects inferred from vQTL analysis 

A range of methods can be used to associate genetic variants with phenotype variability. 

Firstly, we used simulations to evaluate the FPR and power of four methods, which were 

Barlett’s test, Levene’s test, FK test, and DGLM, and found that Levene’s test had a good 

control of FPR and was robust to the distribution of the phenotype. In addition, we found all 

non-linear transformations (including RINT, logarithm, square, and cube transformations) 

could inflate Levene’s test when there was a mean QTL effect. So Levene’s test without 

transformation was chosen for real-data analysis. 

 

We applied this genome-wide vQTL analysis to 13 quantitative traits in the UKB dataset and 

found 75 significant vQTLs for 9 traits, which included 64 with significant mean QTL 

effects. A further direct GEI analysis with covariates (i.e. age and sex) and environmental 

factors (i.e. PA, SB, and smoking status) demonstrated that GEI effects were enriched in 

vQTLs in comparison to randomly selected QTLs. The identified GEI effects included some 

examples consistent with the previous published results, including CHRNA5-A3-B4 locus 

interacting with smoking status on FFR, WNT16-CPED1 locus interacting with age on BMD, 

and FTO locus interacting with PA on obesity-related traits. 

 

5.2 Inflation level in vQTL and epistasis test 

One challenge of statistical tests for interaction effects is the inflated FPR caused by 

imperfect tagging of the causal genetic variant by the marker variants. We studied this 

phantom signal of statistical tests for two interaction effects, vQTL test and epistasis test. For 
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phantom vQTL, we referred to a vQTL signal caused by a QTL effect via LD. We derived 

the expected phantom vQTL F-statistic and demonstrated the observed vQTL in Chapter 2 

was unlikely to be phantom vQTL. In addition, we did not observe discordant vQTL test 

statistics before and after fitting a nearby QTL SNP. Overall, this study quantified the 

inflation level of phantom vQTL and found no evidence for the vQTL we detected in Chapter 

2. We also performed a direct epistasis test between vQTL and genome-wide SNPs on the 

relevant trait and found no genome-wide significant epistatic interactions with the vQTLs. 

 

Previous study185 elaborated phantom epistasis on pairs of genetic variants with LD. We 

performed simulation studies based on whole genome sequencing data and demonstrated the 

existence of phantom epistasis on pairs of genetic variants without LD. Furthermore, we 

quantified the level of inflation was a function of variance explained by the additive causal 

genetic variant. And it was also related to genotyping strategies (array genotyping > array 

genotyping followed by imputation > WGS), which was consistent with the level of LD of 

imperfect tagging for different genotyping strategies. However, we explored four other 

models and none of them could fix the problem. The recognition and qualification of 

phantom epistasis on pairs of genetic variants without LD raise caution to interpret the 

epistasis and call for the genotyping strategy of whole genome sequencing, which can capture 

more (if not all) genetic variants. 

 

5.3 Genetic and environmental risk score 

Current established risk prediction models for complex traits or diseases rely on limited 

numbers of risk factors, usually environmental except family history or monogenetic variants 

for some cases. The recent development of polygenic/genetic risk score has brought its 

prediction accuracy comparable with established risk factors, so more studies are trying to 

assess the added value of genetic risk score combined with established risk prediction 

models. In addition, it is also worth exploring more broad environmental factors given more 

environmental factors have been collected based on questionnaires or electronic health 

records by the recent effort of large biobanks (e.g., UK Biobank). 

 

We used BMI as a model trait, built genetic risk score (GRS) using state-of-the-art statistical 

method SBayesR, built environmental risk score (ERS) with eight environmental factors, and 

constructed genetic and environmental risk score (GERS) using UK Biobank data. We 
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explored different ways to build the ERS and shown the improvement of prediction accuracy 

of GERS in comparison with GRS. The prediction accuracy of GERS based on the multiple 

linear regression was highest among different ways and reached &$ of 18.1% tested in a 

randomly selected testing subset of UKB. And we also investigated the prediction of multiple 

GRS methods (MGRS), which combined the genetic components of environmental factors 

with GRS. We found no improvement of prediction accuracy over GRS, if phenotype and 

environmental factors were measured in the same training dataset. Our study demonstrated 

the value of combining genetic and environmental information for prediction and called for 

more environmental factors to be measured. 

 

5.4 Future directions 

To better understand the genetic and environmental influence on human complex traits, we 

need better datasets. The sample size is a key factor for many aspects of human complex 

traits analysis. A large sample size can increase the power for association mapping, including 

the traditional GWAS and also vQTL analysis described in Chapter 2. It can also increase the 

power for non-additive genetic association, while it is still elusive how large sample size is 

needed to identify robust, replicable, and biological meaningful signals for human complex 

traits, considering the statistical complexities mentioned in Chapter 3. In addition, the sample 

size is an important parameter to determine genetic prediction accuracy. The field has seen 

rapidly accumulating samples for the past decade with now reaching millions of individuals 

for some complex traits or diseases44,221. We can predict the sample size will continue to 

increase by the establishment of more biobanks (e.g. TOPMed222, MVP223, and All of Us140) 

and also by meta-analysis across cohorts in consortia (e.g. the PGC41, GIANT42,43, and 

SSGSC44 consortia). 

 

However, current GWAS datasets contain samples mainly collected from European ancestry 

and other ancestries, such as Asian, African, Latin are under-represented224. This problem of 

lack of diversity will create obstacles to transfer genetic analysis into practice across different 

ancestries. For example, it has been shown that the genetic prediction accuracy based on the 

training dataset of European individuals was far lower for non-European individuals than for 

European individuals225. So there is an increasing effort to collect more non-European 

samples, including GenomeAsia 100K project226, Japan Biobank227, African Genome 

Variation Project228. The diverse genetic datasets will also provide new opportunities for fine-
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mapping causal variants, GEI analysis, and other directions229. 

 

The project combining genetic and environmental information for predicting BMI in Chapter 

4 shows the need to characterize human phenotypes/traits more broadly and 

comprehensively. Richer phenotypes are being collected via questionnaires, wearable 

devices230, and electronic health records (EHRs)231. A multi-omics dataset can also be taken 

as phenotypes to provide another layer of information and study the genetic control of 

underlying molecular mechanisms, including transcriptomics232, epigenomics233, 

proteomics234, microbiomes235, and also these omics data in a single cell level. The rich 

phenotype information can be further extended to the temporal dimension. Longitudinal 

datasets236 can help to distinguish the causal and reverse causal effects and exclude some 

confounding effects. 

 

Another challenge we are facing is the imperfect tagging between marker variants and causal 

variants, which has been shown in Chapter 3. I hypothesize that sequencing data can help to 

solve the problem, as sequencing can capture more genetic variants with less error, especially 

for rare variants. The current genotyping strategy is mainly based on the SNP array followed 

by an imputation to a sequenced reference panel, because of its relatively low cost of < 100 

dollars in comparison to WGS of around a thousand dollars per sample. However, with the 

anticipated further drop of sequencing price and the presence of alternative short-read 

sequencers (e.g. BGI sequencer237), we can foresee more and more individuals will be 

sequenced using WGS. And rare variants are expected to be included for more genetic 

analysis59,238, despite many statistical analytical challenges ahead239. 

 

Overall, the understanding of human complex traits and diseases in the perspective of both 

genetic and environmental factors will be further improved with the accumulation of bigger 

and richer datasets and the development of novel statistical methods.  
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